Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 10/2020

03-04-2020

Study on discharge voltage and discharge capacity of LiFe1−xMnxPO4 with high Mn content

Authors: Shang-min Gong, Xue Bai, Rui Liu, Hong-quan Liu, Yi-jie Gu

Published in: Journal of Materials Science: Materials in Electronics | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rod-like LiFe1−xMnxPO4/C cathode with particle size of about 300–500 nm was fabricated successfully via simple hydrothermal method. By means of adjusting the manganese content of LiFe1−xMnxPO4, the electrochemical property was studied to clarify the effect of manganese content. LiFe1−xMnxPO4/C sample with x = 0.70 showed the superior specific discharge capacity of 153.1 mAh g−1 at a rate of 0.1 C, and the electrochemical mechanism analyzed by electrochemical impedance spectra demonstrated that the LiFe0.30Mn0.70PO4/C exhibited the smallest charge transfer impedance and the largest lithium-ion diffusion coefficient. With the increase of manganese content, the reduction of discharge capacity is attributed to the linear decrease of Mn2+/Mn3+ reduction reaction. When x = 0.80, the two discharge platforms located at 3.5 and 3.9 V, respectively, reach a maximum, which result from the reduction electromotive force of Fe2+/Fe3+ affected by the addition of manganese ions since the discharge platform of LiMnPO4 is higher than that of LiFePO4.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Graphene/polyaniline nanofiber composites as supercapacitor. Chem. Mater. 22, 1392–1401 (2010)CrossRef K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Graphene/polyaniline nanofiber composites as supercapacitor. Chem. Mater. 22, 1392–1401 (2010)CrossRef
2.
go back to reference S. Hussain, X. Yang, M.K. Aslam, A. Shaheen, Robust TiN nanoparticles polysulfide anchor for Li-S storage and diffusion pathways using first principle calculations. Chem. Eng. J. 27, 123595 (2019)CrossRef S. Hussain, X. Yang, M.K. Aslam, A. Shaheen, Robust TiN nanoparticles polysulfide anchor for Li-S storage and diffusion pathways using first principle calculations. Chem. Eng. J. 27, 123595 (2019)CrossRef
3.
go back to reference T. Li, X. Bai, U. Gulzar, Y.-J. Bai, C. Capiglia, A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 29, 1901730 (2019)CrossRef T. Li, X. Bai, U. Gulzar, Y.-J. Bai, C. Capiglia, A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 29, 1901730 (2019)CrossRef
4.
go back to reference A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)CrossRef A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)CrossRef
5.
go back to reference X.C. Wang, Y.D. Huang, D.Z. Jia, Z.P. Guo, D. Ni, M. Miao, Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material. J. Solid State Electrochem. 16(1), 17–24 (2012)CrossRef X.C. Wang, Y.D. Huang, D.Z. Jia, Z.P. Guo, D. Ni, M. Miao, Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material. J. Solid State Electrochem. 16(1), 17–24 (2012)CrossRef
6.
go back to reference O. Toprakci, H.A.K. Toprakci, L. Ji, X. Zhang, Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for recharge able lithium-ion batteries. ACS Appl. Mater. Interfaces 4(3), 1273–1280 (2012)CrossRef O. Toprakci, H.A.K. Toprakci, L. Ji, X. Zhang, Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for recharge able lithium-ion batteries. ACS Appl. Mater. Interfaces 4(3), 1273–1280 (2012)CrossRef
7.
go back to reference C. Delacourt, P. Poizot, M. Morcrette, J.M. Tarascon, C. Masquelier, One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93–99 (2004)CrossRef C. Delacourt, P. Poizot, M. Morcrette, J.M. Tarascon, C. Masquelier, One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93–99 (2004)CrossRef
8.
go back to reference G.H. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid-State Lett. 5(6), A135–A137 (2002)CrossRef G.H. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid-State Lett. 5(6), A135–A137 (2002)CrossRef
9.
go back to reference X.G. Yin, K.L. Huang, S.Q. Liu, H.Y. Wang, H. Wang, Preparation and characterization of Na-Doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J. Power Sour 195, 4308–4312 (2010)CrossRef X.G. Yin, K.L. Huang, S.Q. Liu, H.Y. Wang, H. Wang, Preparation and characterization of Na-Doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J. Power Sour 195, 4308–4312 (2010)CrossRef
10.
go back to reference Z. Huang, P.F. Luo, D.X. Wang, Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode. J. Phys. Chem. Solids 102, 115–120 (2017)CrossRef Z. Huang, P.F. Luo, D.X. Wang, Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode. J. Phys. Chem. Solids 102, 115–120 (2017)CrossRef
11.
go back to reference M. Pivko, M. Bele, E. Tchernychova, N.Z. Logar, R. Dominko, M. Gaberscek, Synthesis of nanometric LiMnPO4 via a two-step technique. Chem. Mater. 24(6), 1041–1047 (2012)CrossRef M. Pivko, M. Bele, E. Tchernychova, N.Z. Logar, R. Dominko, M. Gaberscek, Synthesis of nanometric LiMnPO4 via a two-step technique. Chem. Mater. 24(6), 1041–1047 (2012)CrossRef
12.
go back to reference J. Ding, Z. Su, Y. Zhang, Two-step synthesis of nanocomposite LIFEPO4/C cathode materials for lithium ion batteries. New J. Chem. 40, 1742–1746 (2016)CrossRef J. Ding, Z. Su, Y. Zhang, Two-step synthesis of nanocomposite LIFEPO4/C cathode materials for lithium ion batteries. New J. Chem. 40, 1742–1746 (2016)CrossRef
13.
go back to reference Y. Oh, S. Nam, S. Wi, J. Kang, T. Hwang et al., Effective wrapping of graphene on individual Li4Ti5O12 grains for high- rate Li-ion batteries. J. Mater. Chem. A 2, 2023–2027 (2014)CrossRef Y. Oh, S. Nam, S. Wi, J. Kang, T. Hwang et al., Effective wrapping of graphene on individual Li4Ti5O12 grains for high- rate Li-ion batteries. J. Mater. Chem. A 2, 2023–2027 (2014)CrossRef
14.
go back to reference J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton, C. Kim, J. Cabana, Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 26, 3128–3134 (2014)CrossRef J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton, C. Kim, J. Cabana, Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 26, 3128–3134 (2014)CrossRef
15.
go back to reference S. Nam, S.J. Yang, S. Lee, J. Kim, J. Kang et al., Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in Lithium battery anodes. Carbon 85, 289–298 (2015)CrossRef S. Nam, S.J. Yang, S. Lee, J. Kim, J. Kang et al., Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in Lithium battery anodes. Carbon 85, 289–298 (2015)CrossRef
16.
go back to reference R. He, L.H. Zhang, X. Bai, Z.F. Liu, The effect of heat preservation time on the electrochemical properties of LiFePO4. IOP Conf. Ser 274, 012105 (2017)CrossRef R. He, L.H. Zhang, X. Bai, Z.F. Liu, The effect of heat preservation time on the electrochemical properties of LiFePO4. IOP Conf. Ser 274, 012105 (2017)CrossRef
17.
go back to reference Y.J. Wu, Y.J. Gu, Y.B. Chen, H.Q. Liu, Effect of Lithium phosphate on the structural and electrochemical performance of nanocrystalline LiFePO4 cathode material with Iron defects. Int. J. Hydrog. Energy 43, 2050–2056 (2018)CrossRef Y.J. Wu, Y.J. Gu, Y.B. Chen, H.Q. Liu, Effect of Lithium phosphate on the structural and electrochemical performance of nanocrystalline LiFePO4 cathode material with Iron defects. Int. J. Hydrog. Energy 43, 2050–2056 (2018)CrossRef
18.
go back to reference C.Y. Li, G.J. Li, X.M. Guan, Synthesis and electrochemical performance of micro-nano structured LiFe1−xMnxPO4/C (0≤x≤0.05) cathode for Lithium-Ion batteries. J. Energy Chem. 27, 923–929 (2017)CrossRef C.Y. Li, G.J. Li, X.M. Guan, Synthesis and electrochemical performance of micro-nano structured LiFe1xMnxPO4/C (0≤x≤0.05) cathode for Lithium-Ion batteries. J. Energy Chem. 27, 923–929 (2017)CrossRef
19.
go back to reference H.Q. Liu, Q. Su, C.H. Yuan, T. Yuan, Y.J. Gu, H.Z. Cui, Phase structure and electrochemical performance control of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 based on the concentration adjustment in a molten salt synthesis system. J. Appl. Electrochem. 47, 691–698 (2017)CrossRef H.Q. Liu, Q. Su, C.H. Yuan, T. Yuan, Y.J. Gu, H.Z. Cui, Phase structure and electrochemical performance control of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 based on the concentration adjustment in a molten salt synthesis system. J. Appl. Electrochem. 47, 691–698 (2017)CrossRef
20.
go back to reference G. Gao, A.F. Liu, Z.H. Hu, Y.Y. Xu, Y.F. Liu, Synthesis of LiFePO4/C as cathode material by a novel optimized hydrothermal method. Rare Met. 30(5), 433 (2011)CrossRef G. Gao, A.F. Liu, Z.H. Hu, Y.Y. Xu, Y.F. Liu, Synthesis of LiFePO4/C as cathode material by a novel optimized hydrothermal method. Rare Met. 30(5), 433 (2011)CrossRef
21.
go back to reference X.W. Liu, X.S. Qin, X.J. Wang, X. Li, S. Chen, Synthesis and Performance of LiFexMn1−xPO4/C as cathode material for Lithium Ion batteries. J Wuhan Univ Technol-Mater Sci Ed 3(4), 655–659 (2015)CrossRef X.W. Liu, X.S. Qin, X.J. Wang, X. Li, S. Chen, Synthesis and Performance of LiFexMn1−xPO4/C as cathode material for Lithium Ion batteries. J Wuhan Univ Technol-Mater Sci Ed 3(4), 655–659 (2015)CrossRef
22.
go back to reference X. Zhou, Y. Xie, Y.F. Deng, X.S. Qin, G.H. Chen, The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant assisted solid state method and carbon coating. J Mater Chem A 3(3), 996–1004 (2015)CrossRef X. Zhou, Y. Xie, Y.F. Deng, X.S. Qin, G.H. Chen, The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant assisted solid state method and carbon coating. J Mater Chem A 3(3), 996–1004 (2015)CrossRef
23.
go back to reference M.S. Kim, J.P. Jegal, K.C. Roh, K.B. Kim, synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate Lithium ion batteries. J Mater Chem A 2, 10607–10613 (2014)CrossRef M.S. Kim, J.P. Jegal, K.C. Roh, K.B. Kim, synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate Lithium ion batteries. J Mater Chem A 2, 10607–10613 (2014)CrossRef
24.
go back to reference W. Liu, P. Gao, Y.Y. Mi, J.T. Chen, H.H. Zhou, X.X. Zhang, Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate Lithium ion batteries. J. Mater. Chem. A 1, 2411–2417 (2013)CrossRef W. Liu, P. Gao, Y.Y. Mi, J.T. Chen, H.H. Zhou, X.X. Zhang, Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate Lithium ion batteries. J. Mater. Chem. A 1, 2411–2417 (2013)CrossRef
25.
go back to reference Y.P. Huang, T. Tao, Z. Chen, W. Han, Y. Wu et al., Excellent electrochemical performance of LiFe0.4Mn0.6PO4 microspheres produced using a double carbon coating process. J. Mater. Chem. A 2, 18831–18837 (2014)CrossRef Y.P. Huang, T. Tao, Z. Chen, W. Han, Y. Wu et al., Excellent electrochemical performance of LiFe0.4Mn0.6PO4 microspheres produced using a double carbon coating process. J. Mater. Chem. A 2, 18831–18837 (2014)CrossRef
26.
go back to reference P. Nie, L.F. Shen, F. Zhang, L. Chen, H.F. Deng, X.G. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for Lithium-Ion batteries. CrystEngComm 14, 4284–4288 (2012)CrossRef P. Nie, L.F. Shen, F. Zhang, L. Chen, H.F. Deng, X.G. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for Lithium-Ion batteries. CrystEngComm 14, 4284–4288 (2012)CrossRef
27.
go back to reference X.L. Pan, C.Y. Xu, L. Zhen, Synthesis of LiMnPO4 microspheres assembled by plates wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm 14, 6412–6418 (2012)CrossRef X.L. Pan, C.Y. Xu, L. Zhen, Synthesis of LiMnPO4 microspheres assembled by plates wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm 14, 6412–6418 (2012)CrossRef
28.
go back to reference C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li, Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technol. 181, 301–306 (2008)CrossRef C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li, Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technol. 181, 301–306 (2008)CrossRef
29.
go back to reference J. Wang, Y.J. Gu, W.L. Kong, H.Q. Liu, Y.B. Chen, W. Liu, Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4. Solid State Ionics 327, 11–17 (2018)CrossRef J. Wang, Y.J. Gu, W.L. Kong, H.Q. Liu, Y.B. Chen, W. Liu, Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4. Solid State Ionics 327, 11–17 (2018)CrossRef
30.
go back to reference B. Zhang, X.J. Wang, H. Li, X.J. Huang, Electrochemical performances of LiFe1−xMnxPO4 with high Mn content. J. Power Sour. 196, 6992–6996 (2011)CrossRef B. Zhang, X.J. Wang, H. Li, X.J. Huang, Electrochemical performances of LiFe1−xMnxPO4 with high Mn content. J. Power Sour. 196, 6992–6996 (2011)CrossRef
31.
go back to reference L. Chen, Y.Q. Yuan, X. Feng, M.W. Li, Enhanced electrochemical properties of LiFe1−xMnxPO4/C composites synthesized from FePO4·2H2O nanocrystallites. J. Power Sour. 214, 344–350 (2011)CrossRef L. Chen, Y.Q. Yuan, X. Feng, M.W. Li, Enhanced electrochemical properties of LiFe1−xMnxPO4/C composites synthesized from FePO4·2H2O nanocrystallites. J. Power Sour. 214, 344–350 (2011)CrossRef
32.
go back to reference J. Ding, Z. Sun, H.-L. Tian, Synthesis of high rate performance LiFe1−xMnxPO4/C composites for lithium-ion batteries. Ceram Int. 42(10), 12435–12440 (2016)CrossRef J. Ding, Z. Sun, H.-L. Tian, Synthesis of high rate performance LiFe1−xMnxPO4/C composites for lithium-ion batteries. Ceram Int. 42(10), 12435–12440 (2016)CrossRef
33.
go back to reference X.F. Wang, D. Zhang, X. Yu, R. Cai, Z.P. Shao, X.Z. Liao, Z.F. Ma, Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4. J. Alloys Compd. 492, 675–680 (2010)CrossRef X.F. Wang, D. Zhang, X. Yu, R. Cai, Z.P. Shao, X.Z. Liao, Z.F. Ma, Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4. J. Alloys Compd. 492, 675–680 (2010)CrossRef
34.
go back to reference Z.J. Dai, L. Wang, F.P. Ye, C.C. Huang, J.X. Wang et al., Influence of anion species on the morphology of solvothermal synthesized LiMn0.9Fe0.1PO4. Electrochim. Acta 134, 13–17 (2014)CrossRef Z.J. Dai, L. Wang, F.P. Ye, C.C. Huang, J.X. Wang et al., Influence of anion species on the morphology of solvothermal synthesized LiMn0.9Fe0.1PO4. Electrochim. Acta 134, 13–17 (2014)CrossRef
35.
go back to reference J.W. Xiong, Y.Z. Wang, Y.Y. Wang, J.X. Zhang, PVP-assisted solvothermal synthesis of LiMn0.8Fe0.2PO4/C nanorods as cathode material for Lithium Ion batteries. Ceram Int. 42, 9018–9024 (2016)CrossRef J.W. Xiong, Y.Z. Wang, Y.Y. Wang, J.X. Zhang, PVP-assisted solvothermal synthesis of LiMn0.8Fe0.2PO4/C nanorods as cathode material for Lithium Ion batteries. Ceram Int. 42, 9018–9024 (2016)CrossRef
36.
go back to reference V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, J. Mater, LiMnPO4—a next generation cathode material for lithium-ion batteries. J. Mater. Chem. A1, 3518–3539 (2013)CrossRef V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, J. Mater, LiMnPO4—a next generation cathode material for lithium-ion batteries. J. Mater. Chem. A1, 3518–3539 (2013)CrossRef
37.
go back to reference D. Choi, D.H. Wang, I.T. Bae, J. Xiao, Z.M. Nie et al., LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett. 10, 2799–2805 (2010)CrossRef D. Choi, D.H. Wang, I.T. Bae, J. Xiao, Z.M. Nie et al., LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett. 10, 2799–2805 (2010)CrossRef
38.
go back to reference M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn). J. Electrochem. Soc. 151(9), A1352–A1356 (2004)CrossRef M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn). J. Electrochem. Soc. 151(9), A1352–A1356 (2004)CrossRef
39.
go back to reference S. Hussain, Muhammad Sufyan Javed, Sumreen Asim, Asma Shaheen, Abdul Jabbar Khan, Novel Gravel-Like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram Int. 46, 6406–6412 (2019)CrossRef S. Hussain, Muhammad Sufyan Javed, Sumreen Asim, Asma Shaheen, Abdul Jabbar Khan, Novel Gravel-Like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram Int. 46, 6406–6412 (2019)CrossRef
Metadata
Title
Study on discharge voltage and discharge capacity of LiFe1−xMnxPO4 with high Mn content
Authors
Shang-min Gong
Xue Bai
Rui Liu
Hong-quan Liu
Yi-jie Gu
Publication date
03-04-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 10/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03311-z

Other articles of this Issue 10/2020

Journal of Materials Science: Materials in Electronics 10/2020 Go to the issue