Skip to main content
Top
Published in: Polymer Bulletin 1/2021

25-01-2020 | Original Paper

Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis

Authors: Wilson Uzochukwu Eze, Innocent Chimezie Madufor, Godwin Nkemjika Onyeagoro, Henry Chinedu Obasi, Michael Ifeanyichukwu Ugbaja

Published in: Polymer Bulletin | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report in this study the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics pyrolysis using a batch reactor. Fourteen set of 200 g of waste plastics comprising 27 wt%HDPE, 33 wt%LDPE, 13 wt%PP, 18 wt%PS, 9 wt%PET were de-polymerized with catalyst and a set without catalyst. The catalyst used comprises of a mixture of zeolite-Y, metakaolin, aluminum hydroxide and sodium silicate all synthesized from Kankara kaolin from Kankara in Katsina state, Nigeria. Fourteen different catalyst combinations derived from design of experiment using Design expert 11.0 were used to produce fourteen different liquid fuel samples, and the liquid sample with the highest yield was determined. Fourier transform infrared spectroscopy was used to detect various characteristic functional groups present in the samples. Furthermore, the various compounds in the uncatalyzed (thermal pyrolysis) and catalyzed samples with highest yield were determined using GC/MS. The results show that the highest yield of liquid fuel from the fourteen catalyst combination was 46.7 wt% while the thermal pyrolysis gave a yield of 66.9 wt%. The GC/MS result shows carbon in the range of C6–C13 and absence of long straight chain paraffins in the catalyzed fuel samples while the uncatalyzed sample has carbon in the range of C7–C20. Consequently, the thermal pyrolysis sample consists of 59%, 36% and 5% of gasoline, diesel and fuel oil, respectively, while the catalyzed sample consists of 93% gasoline and 7% diesel fraction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Behera AK, Avancha S, Basak RK, Sen R, Adhikari B (2012) Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohydr Polym 88(1):329–335CrossRef Behera AK, Avancha S, Basak RK, Sen R, Adhikari B (2012) Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohydr Polym 88(1):329–335CrossRef
2.
go back to reference Singh P, Sharma V (2016) Integrated plastic waste management: environmental and improved health approaches. Procedia Environ Sci 35:692–700CrossRef Singh P, Sharma V (2016) Integrated plastic waste management: environmental and improved health approaches. Procedia Environ Sci 35:692–700CrossRef
3.
go back to reference Lee H, Park Y-K (2018) Catalytic pyrolysis of polyethylene and polypropylene over desilicated beta and Al-MSU-F. Catalysts 8(11):501CrossRef Lee H, Park Y-K (2018) Catalytic pyrolysis of polyethylene and polypropylene over desilicated beta and Al-MSU-F. Catalysts 8(11):501CrossRef
4.
go back to reference Hafeez S, Manos G, Al-Salem S, Aristodemou E, Constantinou A (2018) Liquid fuel synthesis in microreactors. React Chem Eng 3:414–432CrossRef Hafeez S, Manos G, Al-Salem S, Aristodemou E, Constantinou A (2018) Liquid fuel synthesis in microreactors. React Chem Eng 3:414–432CrossRef
5.
go back to reference Wang T, Xiao F, Zhu X, Huang B, Wang J, Amirkhanian S (2018) Energy consumption and environmental impact of rubberized asphalt pavement. J Clean Prod 180:139–158CrossRef Wang T, Xiao F, Zhu X, Huang B, Wang J, Amirkhanian S (2018) Energy consumption and environmental impact of rubberized asphalt pavement. J Clean Prod 180:139–158CrossRef
6.
go back to reference La Mantia F (2002) Handbook of plastics recycling. iSmithers Rapra Publishing, Shrewsbury La Mantia F (2002) Handbook of plastics recycling. iSmithers Rapra Publishing, Shrewsbury
7.
go back to reference Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326CrossRef Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326CrossRef
8.
go back to reference Sim J-W, Kim S-S (2017) Recovery of polyethylene telephthalate monomer over Cu or Mn/gamma-Al2O3 catalysts. Appl Chem Eng 28(4):485–489 Sim J-W, Kim S-S (2017) Recovery of polyethylene telephthalate monomer over Cu or Mn/gamma-Al2O3 catalysts. Appl Chem Eng 28(4):485–489
9.
go back to reference Lee H, Kim Y-M, Lee I-G, Jeon J-K, Jung S-C, Do Chung J, Park Y-K (2016) Recent advances in the catalytic hydrodeoxygenation of bio-oil. Korean J Chem Eng 33(12):3299–3315CrossRef Lee H, Kim Y-M, Lee I-G, Jeon J-K, Jung S-C, Do Chung J, Park Y-K (2016) Recent advances in the catalytic hydrodeoxygenation of bio-oil. Korean J Chem Eng 33(12):3299–3315CrossRef
10.
go back to reference Panda AK, Singh RK, Mishra D (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustain Energy Rev 14(1):233–248CrossRef Panda AK, Singh RK, Mishra D (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustain Energy Rev 14(1):233–248CrossRef
11.
go back to reference Shafaghat H, Rezaei PS, Ro D, Jae J, Kim B-S, Jung S-C, Park Y-K (2017) In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer. J Ind Eng Chem 54:447–453CrossRef Shafaghat H, Rezaei PS, Ro D, Jae J, Kim B-S, Jung S-C, Park Y-K (2017) In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer. J Ind Eng Chem 54:447–453CrossRef
12.
go back to reference Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds A, Spencer N, Jouhara H (2017) Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Progr 3:171–197CrossRef Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds A, Spencer N, Jouhara H (2017) Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Progr 3:171–197CrossRef
13.
go back to reference Zhang X, Lei H, Yadavalli G, Zhu L, Wei Y, Liu Y (2015) Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel 144:33–42CrossRef Zhang X, Lei H, Yadavalli G, Zhu L, Wei Y, Liu Y (2015) Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel 144:33–42CrossRef
14.
go back to reference López A, De Marco I, Caballero B, Laresgoiti M, Adrados A, Aranzabal A (2011) Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl Catal B 104(3–4):211–219CrossRef López A, De Marco I, Caballero B, Laresgoiti M, Adrados A, Aranzabal A (2011) Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl Catal B 104(3–4):211–219CrossRef
15.
go back to reference Auxilio AR, Choo W-L, Kohli I, Srivatsa SC, Bhattacharya S (2017) An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser. Waste Manag 67:143–154CrossRef Auxilio AR, Choo W-L, Kohli I, Srivatsa SC, Bhattacharya S (2017) An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser. Waste Manag 67:143–154CrossRef
16.
go back to reference Seo Y-H, Lee K-H, Shin D-H (2003) Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis. J Anal Appl Pyrol 70(2):383–398CrossRef Seo Y-H, Lee K-H, Shin D-H (2003) Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis. J Anal Appl Pyrol 70(2):383–398CrossRef
17.
go back to reference Li K, Lee SW, Yuan G, Lei J, Lin S, Weerachanchai P, Wang J-Y (2016) Investigation into the catalytic activity of microporous and mesoporous catalysts in the pyrolysis of waste polyethylene and polypropylene mixture. Energies 9(6):431CrossRef Li K, Lee SW, Yuan G, Lei J, Lin S, Weerachanchai P, Wang J-Y (2016) Investigation into the catalytic activity of microporous and mesoporous catalysts in the pyrolysis of waste polyethylene and polypropylene mixture. Energies 9(6):431CrossRef
18.
go back to reference Uemichi Y, Hattori M, Itoh T, Nakamura J, Sugioka M (1998) Deactivation behaviors of zeolite and silica–alumina catalysts in the degradation of polyethylene. Ind Eng Chem Res 37(3):867–872CrossRef Uemichi Y, Hattori M, Itoh T, Nakamura J, Sugioka M (1998) Deactivation behaviors of zeolite and silica–alumina catalysts in the degradation of polyethylene. Ind Eng Chem Res 37(3):867–872CrossRef
19.
go back to reference Aguado J, Serrano D, San Miguel G, Castro M, Madrid S (2007) Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. J Anal Appl Pyrol 79(1–2):415–423CrossRef Aguado J, Serrano D, San Miguel G, Castro M, Madrid S (2007) Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. J Anal Appl Pyrol 79(1–2):415–423CrossRef
20.
go back to reference Ajibola AA, Omoleye AJ, Efeovbokhan VE (2018) Catalytic cracking of polyethylene plastic waste using synthesized zeolite Y from Nigerian kaolin deposit. Appl Petrochem Res 8:211–217CrossRef Ajibola AA, Omoleye AJ, Efeovbokhan VE (2018) Catalytic cracking of polyethylene plastic waste using synthesized zeolite Y from Nigerian kaolin deposit. Appl Petrochem Res 8:211–217CrossRef
22.
go back to reference Babalola R, Bassey EN, Brown IL, Salahudeen N (2017) Identification of kaolinite clay in five local government areas of Akwa Ibom State, Nigeria for zeolite synthesis as a way of import substitution. J Emerg Trends Eng Appl Sci 8(5):215–218 Babalola R, Bassey EN, Brown IL, Salahudeen N (2017) Identification of kaolinite clay in five local government areas of Akwa Ibom State, Nigeria for zeolite synthesis as a way of import substitution. J Emerg Trends Eng Appl Sci 8(5):215–218
24.
go back to reference Ajayi AO, Atta AY, Aderemi BO, Adefila SS (2010) Novel method of metakaolin dealumination—preliminary investigation. J Appl Sci Res 6(10):1539–1546 Ajayi AO, Atta AY, Aderemi BO, Adefila SS (2010) Novel method of metakaolin dealumination—preliminary investigation. J Appl Sci Res 6(10):1539–1546
25.
go back to reference Aderemi BO, Edomwonyi-Otu L, Adefila SS (2009) A new approach to metakaolin dealumination. Aust J Basic Appl Sci 3(3):2243–2248 Aderemi BO, Edomwonyi-Otu L, Adefila SS (2009) A new approach to metakaolin dealumination. Aust J Basic Appl Sci 3(3):2243–2248
26.
go back to reference Bawa SG, Ahmed AS, Okonkwo PC, Waziri SM (2017) Developmemt of pilot scale dealumination unit of 2.5 kg metakaolin per batch capacity. Niger J Technol 36(3):829–834 Bawa SG, Ahmed AS, Okonkwo PC, Waziri SM (2017) Developmemt of pilot scale dealumination unit of 2.5 kg metakaolin per batch capacity. Niger J Technol 36(3):829–834
27.
go back to reference Anene AF, Fredriksen SB, Sætre KA, Tokheim L-A (2018) Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability 10(11):3979CrossRef Anene AF, Fredriksen SB, Sætre KA, Tokheim L-A (2018) Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability 10(11):3979CrossRef
28.
go back to reference Rehan M, Miandad R, Barakat MA et al (2017) Effect of zeolitecatalysts on pyrolysis liquid oil. Int Biodeterior Biodegrad 119:162–175CrossRef Rehan M, Miandad R, Barakat MA et al (2017) Effect of zeolitecatalysts on pyrolysis liquid oil. Int Biodeterior Biodegrad 119:162–175CrossRef
29.
go back to reference Kumar S, Singh RK (2011) Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz J Chem Eng 28:659–667CrossRef Kumar S, Singh RK (2011) Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz J Chem Eng 28:659–667CrossRef
Metadata
Title
Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis
Authors
Wilson Uzochukwu Eze
Innocent Chimezie Madufor
Godwin Nkemjika Onyeagoro
Henry Chinedu Obasi
Michael Ifeanyichukwu Ugbaja
Publication date
25-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 1/2021
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03116-4

Other articles of this Issue 1/2021

Polymer Bulletin 1/2021 Go to the issue

Premium Partners