Skip to main content
Top
Published in: Polymer Bulletin 5/2017

07-09-2016 | Original Paper

Sulfonium cation based ionic liquid incorporated polymer electrolyte for lithium ion battery

Authors: R. Muthupradeepa, M. Sivakumar, R. Subadevi, V. Suryanarayanan

Published in: Polymer Bulletin | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymer electrolyte (PE) composed of poly(vinylidene fluoride-co-hexafluoropropylene) P(VdF-co-HFP) and triethylsulfonium bis(trifluoromethylsulfonyl)imide (SEt3TFSI) ionic liquid (IL) had been evaluated in lithium ion battery for the first time in order to improve its performance and cycle life. X-ray diffraction analysis (XRD) reveals that incorporation of the IL (20 and 25 wt%) into the polymer matrix results in the change of state of the material from semi-crystalline to amorphous nature. Thermo-gravimetric and differential thermal analysis (TG/DTA) of the PE sample with 25 wt% of the IL shows high thermal stability. The nature of functional groups present in the PE was investigated by Raman spectrum. Surface morphological characteristics indicate that increase in the loading of the IL into the polymer matrix leads to maximum number of pores with good interconnected network. Polymer/IL electrolyte (wt. ratio of 75:25) having a maximum ionic conductivity of 6.93 × 10−5 S/cm at 303 K with an activation energy of 0.23 eV shows excellent electrochemical potential stability of 4.4 V vs Li, as revealed by cyclic voltammetry (CV). Charge–discharge characteristics of the coin cell containing the above optimized ratio of PE with LiFePO4 cathode and Li anode shows a discharge capacity of 133 mAh/g, which is stable up to ten cycles.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
2.
go back to reference Yuan F, Chen HZ, Yang HY, Li HY, Wang M (2005) PAN–PEO solid polymer electrolytes with high ionic conductivity. Mater Chem Phys 89:390CrossRef Yuan F, Chen HZ, Yang HY, Li HY, Wang M (2005) PAN–PEO solid polymer electrolytes with high ionic conductivity. Mater Chem Phys 89:390CrossRef
3.
go back to reference An YX, Zuo PJ, Cheng XQ, Liao LX, Yin GP (2011) The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochim Acta 56:4841–4848CrossRef An YX, Zuo PJ, Cheng XQ, Liao LX, Yin GP (2011) The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries. Electrochim Acta 56:4841–4848CrossRef
4.
go back to reference Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81–82:925–929CrossRef Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81–82:925–929CrossRef
5.
go back to reference Farrington MD (2001) Safety of lithium batteries in transportation. J Power Sources 96:260–265CrossRef Farrington MD (2001) Safety of lithium batteries in transportation. J Power Sources 96:260–265CrossRef
6.
go back to reference Chintapalli S, Frech R (1996) Effect of plasticizers on ionic association and conductivity in the (PEO) 9LiCF3SO3 system. Macromolecules 29:3499CrossRef Chintapalli S, Frech R (1996) Effect of plasticizers on ionic association and conductivity in the (PEO) 9LiCF3SO3 system. Macromolecules 29:3499CrossRef
7.
go back to reference Saito Y, Stephan AM, Kataoka H (2003) Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient. Solid State Ionics 160:149CrossRef Saito Y, Stephan AM, Kataoka H (2003) Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient. Solid State Ionics 160:149CrossRef
8.
go back to reference Ghosh A, Kofinas P (2008) Nanostructured block copolymer dry electrolyte. J Electrochem Soc 155:A428–A431CrossRef Ghosh A, Kofinas P (2008) Nanostructured block copolymer dry electrolyte. J Electrochem Soc 155:A428–A431CrossRef
9.
go back to reference Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456CrossRef Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456CrossRef
10.
go back to reference Shin JH, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152:A978–A983CrossRef Shin JH, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152:A978–A983CrossRef
11.
go back to reference Shin JH, Henderson WA, Passerini S (2005) An elegant fix for polymer electrolytes. Electrochem Solid State 8:A125–A127CrossRef Shin JH, Henderson WA, Passerini S (2005) An elegant fix for polymer electrolytes. Electrochem Solid State 8:A125–A127CrossRef
12.
go back to reference Shin JH, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5:1016–1020CrossRef Shin JH, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5:1016–1020CrossRef
13.
go back to reference Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
14.
go back to reference Fisher AS, Khalid MB, Widstrom M, Kofinas P (2012) Anion effects on solid polymer electrolytes containing sulfur based ionic liquid for lithium batteries. J Electrochem Soc 159(5):A592–A597CrossRef Fisher AS, Khalid MB, Widstrom M, Kofinas P (2012) Anion effects on solid polymer electrolytes containing sulfur based ionic liquid for lithium batteries. J Electrochem Soc 159(5):A592–A597CrossRef
15.
go back to reference Xiong S, Xie K, Blomberg E, Jacobsson P, Matic A (2014) Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium–sulfur batteries. J Power Sources 252:150–155CrossRef Xiong S, Xie K, Blomberg E, Jacobsson P, Matic A (2014) Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium–sulfur batteries. J Power Sources 252:150–155CrossRef
16.
go back to reference Deraman K, Mohamed NS, Subban RHY (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)–ammonium triflate–ionic liquid for proton battery. Int J Electrochem Sci 8:1459–1468 Deraman K, Mohamed NS, Subban RHY (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)–ammonium triflate–ionic liquid for proton battery. Int J Electrochem Sci 8:1459–1468
17.
go back to reference Yang P, Cui W, Li L, Liu L, An M (2012) Characterization and properties of ternary P (VdF–HFP)–LiTFSI–EMITFSI ionic liquid polymer electrolytes. Solid State Sci 14:598–606CrossRef Yang P, Cui W, Li L, Liu L, An M (2012) Characterization and properties of ternary P (VdF–HFP)–LiTFSI–EMITFSI ionic liquid polymer electrolytes. Solid State Sci 14:598–606CrossRef
18.
go back to reference Sekhon SS, Lalia BS, Park J-S, Kim CS, Yamada K (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256CrossRef Sekhon SS, Lalia BS, Park J-S, Kim CS, Yamada K (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256CrossRef
19.
go back to reference Fernicola A, Panero S, Scrosati B, Tamada M, Ohno H (2007) New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs. Chem Phys Chem 8:1103 Fernicola A, Panero S, Scrosati B, Tamada M, Ohno H (2007) New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs. Chem Phys Chem 8:1103
20.
go back to reference Sutto TE (2007) Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J Electrochem Soc 154:P101–P107CrossRef Sutto TE (2007) Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J Electrochem Soc 154:P101–P107CrossRef
21.
go back to reference Kim K, Cho Y-H, Shin H-C (2013) 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries. J Power Sources 225:113–118CrossRef Kim K, Cho Y-H, Shin H-C (2013) 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries. J Power Sources 225:113–118CrossRef
22.
go back to reference Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D (2007) Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Commun 9:796–800CrossRef Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D (2007) Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Commun 9:796–800CrossRef
23.
go back to reference Markevich E, Baranchugov V, Salitra G, Aurbach D, Schmidt MA (2008) Behavior of graphite electrodes in solutions based on ionic liquids in in situ Raman studies. J Electrochem Soc 155(2):A132–A137CrossRef Markevich E, Baranchugov V, Salitra G, Aurbach D, Schmidt MA (2008) Behavior of graphite electrodes in solutions based on ionic liquids in in situ Raman studies. J Electrochem Soc 155(2):A132–A137CrossRef
24.
go back to reference Gao K, Song X-H, Shi Y, Li S-D (2013) Electrochemical performances and interfacial properties of graphite electrodes with ionic liquid and alkyl-carbonate hybrid electrolytes. Electrochim Acta 114:736–744CrossRef Gao K, Song X-H, Shi Y, Li S-D (2013) Electrochemical performances and interfacial properties of graphite electrodes with ionic liquid and alkyl-carbonate hybrid electrolytes. Electrochim Acta 114:736–744CrossRef
25.
go back to reference Kaga Y, Katayama Y, Miura T, Komaba S (2010) Anode reactions of a tin thin film electrode modified with an ion-conductive polymer in a room-temperature ionic liquid electrolyte. ECS Trans 25(36):91–98CrossRef Kaga Y, Katayama Y, Miura T, Komaba S (2010) Anode reactions of a tin thin film electrode modified with an ion-conductive polymer in a room-temperature ionic liquid electrolyte. ECS Trans 25(36):91–98CrossRef
26.
go back to reference Hassoun J, Fernicola A, Navarra MA, Panero S, Scrosati B (2010) An advanced lithium-ion battery based on a nanostructured Sn–C anode and an electrochemically stable LiTFSi-Py 24 TFSI ionic liquid electrolyte. J Power Sources 195:574–579CrossRef Hassoun J, Fernicola A, Navarra MA, Panero S, Scrosati B (2010) An advanced lithium-ion battery based on a nanostructured Sn–C anode and an electrochemically stable LiTFSi-Py 24 TFSI ionic liquid electrolyte. J Power Sources 195:574–579CrossRef
27.
go back to reference Lux SF, Schmuck M, Jeong S, Passerini S, Winter M, Balducci A (2010) Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. Int J Energy Res 34:97–106CrossRef Lux SF, Schmuck M, Jeong S, Passerini S, Winter M, Balducci A (2010) Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. Int J Energy Res 34:97–106CrossRef
28.
go back to reference Lewandowski A, Swiderska-Mocek A (2009) Properties of the lithium and graphite–lithium anodes in N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide. J Power Sources 194:502–507CrossRef Lewandowski A, Swiderska-Mocek A (2009) Properties of the lithium and graphite–lithium anodes in N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide. J Power Sources 194:502–507CrossRef
29.
go back to reference Ye Y-S, Rick J, Hwang B-J (2013) Ionic liquid polymer electrolytes. J Mater chem A 1:2719CrossRef Ye Y-S, Rick J, Hwang B-J (2013) Ionic liquid polymer electrolytes. J Mater chem A 1:2719CrossRef
30.
go back to reference Singh PK, Bhattacharya B, Mehra RM, Rhee HW (2011) Plasticizer doped ionic liquid incorporated solid polymer electrolytes for photovoltaic application. Curr Appl Phys 11:616–619CrossRef Singh PK, Bhattacharya B, Mehra RM, Rhee HW (2011) Plasticizer doped ionic liquid incorporated solid polymer electrolytes for photovoltaic application. Curr Appl Phys 11:616–619CrossRef
31.
go back to reference Zhang Q, Liu S, Li Z, Li J, Chen Z, Wang R, Lu L, Deng Y (2009) Novel cyclic sulfonium-based ionic liquids: synthesis, characterization, and physicochemical properties. Chem Eur J 15:765–778CrossRef Zhang Q, Liu S, Li Z, Li J, Chen Z, Wang R, Lu L, Deng Y (2009) Novel cyclic sulfonium-based ionic liquids: synthesis, characterization, and physicochemical properties. Chem Eur J 15:765–778CrossRef
32.
go back to reference Anuar NK, Subban RHY, Mohamed NS (2012) Properties of PEMA–NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5:2609–2620CrossRef Anuar NK, Subban RHY, Mohamed NS (2012) Properties of PEMA–NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5:2609–2620CrossRef
33.
go back to reference Matsumoto H, Matsuda T, Miyazaki Y (2000) Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl) imide. Chem Lett 29:1430–1431CrossRef Matsumoto H, Matsuda T, Miyazaki Y (2000) Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl) imide. Chem Lett 29:1430–1431CrossRef
34.
go back to reference Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 9:2353–2358CrossRef Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 9:2353–2358CrossRef
35.
go back to reference Zhao D, Fei Z, Ang WH, Dyson PJ (2007) Sulfonium-based ionic liquids incorporating the allyl functionality. Int J Mol Sci 8:304–315CrossRef Zhao D, Fei Z, Ang WH, Dyson PJ (2007) Sulfonium-based ionic liquids incorporating the allyl functionality. Int J Mol Sci 8:304–315CrossRef
36.
go back to reference Fisher AS, Khalid MB, Widstrom M, Kofinas P (2011) Solid polymer electrolytes with sulfur based ionic liquid for lithium batteries. J Power Sources 196:9767–9773CrossRef Fisher AS, Khalid MB, Widstrom M, Kofinas P (2011) Solid polymer electrolytes with sulfur based ionic liquid for lithium batteries. J Power Sources 196:9767–9773CrossRef
37.
go back to reference Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264CrossRef Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264CrossRef
38.
go back to reference Sirisopanaporn C, Fernicola A, Scrosati B (2009) New, ionic liquid-based membranes for lithium battery application. J Power Sources 186:490–495CrossRef Sirisopanaporn C, Fernicola A, Scrosati B (2009) New, ionic liquid-based membranes for lithium battery application. J Power Sources 186:490–495CrossRef
39.
go back to reference Kim GT, Jeong SS, Xue MZ, Balducci A, Winter M, Passerini S, Alessandrini F, Appetecchi GB (2012) Development of ionic liquid-based lithium battery prototypes. J Power Sources 199:239–249CrossRef Kim GT, Jeong SS, Xue MZ, Balducci A, Winter M, Passerini S, Alessandrini F, Appetecchi GB (2012) Development of ionic liquid-based lithium battery prototypes. J Power Sources 199:239–249CrossRef
40.
go back to reference Liew CW, Ong YS, Lim JY, Lim CS, Teoh KH, Ramesh S (2013) Effect of ionic liquid on semi-crystalline poly(vinylidene fluoride-co-hexafluoropropylene) solid copolymer electrolytes. Int J Electrochem Sci 8:7779–7794 Liew CW, Ong YS, Lim JY, Lim CS, Teoh KH, Ramesh S (2013) Effect of ionic liquid on semi-crystalline poly(vinylidene fluoride-co-hexafluoropropylene) solid copolymer electrolytes. Int J Electrochem Sci 8:7779–7794
41.
go back to reference Wu F, Feng T, Bai Y, Wu C, Ye L, Feng Z (2009) Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF–HFP. Solid State Ionics 180:677–680CrossRef Wu F, Feng T, Bai Y, Wu C, Ye L, Feng Z (2009) Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF–HFP. Solid State Ionics 180:677–680CrossRef
42.
go back to reference Yu B, Zhou F, Wang C, Liu W (2007) A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. Eur Polym J 43:2699–2707CrossRef Yu B, Zhou F, Wang C, Liu W (2007) A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. Eur Polym J 43:2699–2707CrossRef
43.
go back to reference Singh PK, Sabin KC, Chen X (2016) Ionic liquid–solid polymer electrolyte blends for supercapacitor applications. Polym Bull 73:255–263CrossRef Singh PK, Sabin KC, Chen X (2016) Ionic liquid–solid polymer electrolyte blends for supercapacitor applications. Polym Bull 73:255–263CrossRef
44.
go back to reference Aravindan V, Vickraman P, Krishnaraj K (2008) Lithium difluoro (oxalate) borate-based novel nanocomposite polymer electrolytes for lithium ion batteries. Polym Int 57:932–938CrossRef Aravindan V, Vickraman P, Krishnaraj K (2008) Lithium difluoro (oxalate) borate-based novel nanocomposite polymer electrolytes for lithium ion batteries. Polym Int 57:932–938CrossRef
45.
go back to reference Kim JK, Matic A, Ahn JH, Jacobsson P (2010) An imidazolium based ionic liquid electrolyte for lithium batteries. J Power Sources 195:7639–7643CrossRef Kim JK, Matic A, Ahn JH, Jacobsson P (2010) An imidazolium based ionic liquid electrolyte for lithium batteries. J Power Sources 195:7639–7643CrossRef
46.
go back to reference Duluard S, Grondin J, Bruneel JL, Campet G, Delville M-H, Lassegues J-C (2008) Lithium solvation in a PMMA membrane plasticized by a lithium-conducting ionic liquid based on 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. J Raman Spectroscopy 39:1189–1194CrossRef Duluard S, Grondin J, Bruneel JL, Campet G, Delville M-H, Lassegues J-C (2008) Lithium solvation in a PMMA membrane plasticized by a lithium-conducting ionic liquid based on 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. J Raman Spectroscopy 39:1189–1194CrossRef
47.
go back to reference Han HS, Kang HR, Kim SW, Kim HT (2002) Phase-separated polymer electrolyte based on poly(vinyl chloride)/poly(ethyl methacrylate) blend. J Power Sources 112:461–468CrossRef Han HS, Kang HR, Kim SW, Kim HT (2002) Phase-separated polymer electrolyte based on poly(vinyl chloride)/poly(ethyl methacrylate) blend. J Power Sources 112:461–468CrossRef
48.
go back to reference Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA–PVC gel polymer blend electrolytes. J Non Cryst Solids 357:2132–2138CrossRef Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA–PVC gel polymer blend electrolytes. J Non Cryst Solids 357:2132–2138CrossRef
49.
go back to reference Jung H-R, Ju D-H, Lee W-J, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochem Acta 54:3630–3637CrossRef Jung H-R, Ju D-H, Lee W-J, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochem Acta 54:3630–3637CrossRef
50.
go back to reference Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF–HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32CrossRef Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF–HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32CrossRef
51.
go back to reference Sekhon SS (2003) Conductivity behaviour of polymer gel electrolytes: role of polymer. Bull Mater Sci 26:321–328CrossRef Sekhon SS (2003) Conductivity behaviour of polymer gel electrolytes: role of polymer. Bull Mater Sci 26:321–328CrossRef
52.
go back to reference Abraham KM, Alamgir M (1993) Ambient temperature rechargeable polymer-electrolyte batteries. J Power Sources 43:195–208CrossRef Abraham KM, Alamgir M (1993) Ambient temperature rechargeable polymer-electrolyte batteries. J Power Sources 43:195–208CrossRef
53.
go back to reference Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Characterization of poly(vinylidene fluoride–hexafluoropropylene)(PVdF–HFP) electrolytes complexed with different lithium salts. Eur Polym J 41:15–21CrossRef Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Characterization of poly(vinylidene fluoride–hexafluoropropylene)(PVdF–HFP) electrolytes complexed with different lithium salts. Eur Polym J 41:15–21CrossRef
54.
go back to reference Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, Penazzi N (2010) UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources 195:1706–1713CrossRef Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, Penazzi N (2010) UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources 195:1706–1713CrossRef
55.
go back to reference Missan HPS, Lalia BS, Karan K, Maxwell A (2010) Polymer–ionic liquid nano-composites electrolytes: electrical, thermal and morphological properties. Mater Sci Eng B 175:143–149CrossRef Missan HPS, Lalia BS, Karan K, Maxwell A (2010) Polymer–ionic liquid nano-composites electrolytes: electrical, thermal and morphological properties. Mater Sci Eng B 175:143–149CrossRef
56.
go back to reference Noor ISM, Majid SR, Arof AK, Djurado D, Neto SC, Pawlicka A (2012) Characteristics of gellan gum–LiCF3SO3 polymer electrolytes. Solid State Ionics 225:649–653CrossRef Noor ISM, Majid SR, Arof AK, Djurado D, Neto SC, Pawlicka A (2012) Characteristics of gellan gum–LiCF3SO3 polymer electrolytes. Solid State Ionics 225:649–653CrossRef
57.
go back to reference Ye H, Huang J, Xu JJ, Khalfan A, Greenbaum SG (2007) Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF–HFP blends. J Electrochem Soc 154:A1048–A1057CrossRef Ye H, Huang J, Xu JJ, Khalfan A, Greenbaum SG (2007) Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF–HFP blends. J Electrochem Soc 154:A1048–A1057CrossRef
58.
go back to reference Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn JH, Ryu H-S, Ahn H-J, Kim K-W, Nah C (2010) Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354CrossRef Raghavan P, Zhao X, Manuel J, Chauhan GS, Ahn JH, Ryu H-S, Ahn H-J, Kim K-W, Nah C (2010) Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354CrossRef
59.
go back to reference Nittani T, Shimada M, Kawamura K, Dokko K, Rho Y-H (2005) Synthesis of Li+ ion conductive PEO–PSt block copolymer electrolyte with microphase separation structure. Electrochem solid State Lett 8:A385–A388CrossRef Nittani T, Shimada M, Kawamura K, Dokko K, Rho Y-H (2005) Synthesis of Li+ ion conductive PEO–PSt block copolymer electrolyte with microphase separation structure. Electrochem solid State Lett 8:A385–A388CrossRef
Metadata
Title
Sulfonium cation based ionic liquid incorporated polymer electrolyte for lithium ion battery
Authors
R. Muthupradeepa
M. Sivakumar
R. Subadevi
V. Suryanarayanan
Publication date
07-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 5/2017
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1796-y

Other articles of this Issue 5/2017

Polymer Bulletin 5/2017 Go to the issue

Premium Partners