Skip to main content
Top
Published in: Journal of Scientific Computing 1/2017

16-07-2016

Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems

Authors: Hailong Guo, Zhimin Zhang, Ren Zhao

Published in: Journal of Scientific Computing | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Some numerical algorithms for elliptic eigenvalue problems are proposed, analyzed, and numerically tested. The methods combine advantages of the two-grid algorithm (Xu and Zhou in Math Comput 70(233):17–25, 2001), the two-space method (Racheva and Andreev in Comput Methods Appl Math 2:171–185, 2002), the shifted inverse power method (Hu and Cheng in Math Comput 80:1287–1301, 2011; Yang and Bi in SIAM J Numer Anal 49:1602–1624, 2011), and the polynomial preserving recovery enhancing technique (Naga et al. in SIAM J Sci Comput 28:1289–1300, 2006). Our new algorithms compare favorably with some existing methods and enjoy superconvergence property.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Andreev, A.B., Lazarov, R.D., Racheva, M.R.: Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182, 333–349 (2005)MathSciNetCrossRefMATH Andreev, A.B., Lazarov, R.D., Racheva, M.R.: Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182, 333–349 (2005)MathSciNetCrossRefMATH
2.
go back to reference Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics. Wiley, New York (2000)CrossRefMATH Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics. Wiley, New York (2000)CrossRefMATH
3.
go back to reference Armentano, M., Durán, R.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 93–101 (2004)MathSciNetMATH Armentano, M., Durán, R.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 93–101 (2004)MathSciNetMATH
4.
go back to reference Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, London (2001)MATH Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, London (2001)MATH
5.
go back to reference Babuška, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)MathSciNetCrossRefMATH Babuška, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)MathSciNetCrossRefMATH
6.
go back to reference Babuška, I., Osborn, J.: Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II, pp. 641–787, Handbook of Numerical Analysis, North-Holland, Amsterdan (1991) Babuška, I., Osborn, J.: Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II, pp. 641–787, Handbook of Numerical Analysis, North-Holland, Amsterdan (1991)
8.
go back to reference Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRefMATH Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRefMATH
9.
go back to reference Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press, New York (1983)MATH Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press, New York (1983)MATH
10.
go back to reference Chen, L.: iFEM: An Integrated Finite Element Package in MATLAB, Technical Report, University of California at Irvine (2009) Chen, L.: iFEM: An Integrated Finite Element Package in MATLAB, Technical Report, University of California at Irvine (2009)
11.
go back to reference Chien, C.-S., Jeng, B.-W.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27, 1287–1304 (2006)MathSciNetCrossRefMATH Chien, C.-S., Jeng, B.-W.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27, 1287–1304 (2006)MathSciNetCrossRefMATH
12.
go back to reference Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATH
14.
go back to reference Durán, R., Padra, G., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13, 1219–1229 (2003)MathSciNetCrossRefMATH Durán, R., Padra, G., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13, 1219–1229 (2003)MathSciNetCrossRefMATH
15.
go back to reference Fang, J., Gao, X., Zhou, A.: A finite element recovery approach approach to eigenvalue approximations with applications to electronic structure calculations. J. Sci. Comput. 55, 432–454 (2013)MathSciNetCrossRefMATH Fang, J., Gao, X., Zhou, A.: A finite element recovery approach approach to eigenvalue approximations with applications to electronic structure calculations. J. Sci. Comput. 55, 432–454 (2013)MathSciNetCrossRefMATH
18.
19.
go back to reference Giani, S., Grubišić, L., Ovall, J.: Benchmark results for testing adaptive finite element eigenvalue procedures. Appl. Numer. Math. 62, 121–140 (2012)MathSciNetCrossRefMATH Giani, S., Grubišić, L., Ovall, J.: Benchmark results for testing adaptive finite element eigenvalue procedures. Appl. Numer. Math. 62, 121–140 (2012)MathSciNetCrossRefMATH
20.
go back to reference Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47, 1067–1091 (2009)MathSciNetCrossRefMATH Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47, 1067–1091 (2009)MathSciNetCrossRefMATH
21.
go back to reference Hoppe, R.H.W., Wu, H., Zhang, Z.: Adaptive finite element methods for the Laplace eigenvalue problem. J. Numer. Math. 18, 281–302 (2010)MathSciNetCrossRefMATH Hoppe, R.H.W., Wu, H., Zhang, Z.: Adaptive finite element methods for the Laplace eigenvalue problem. J. Numer. Math. 18, 281–302 (2010)MathSciNetCrossRefMATH
24.
go back to reference Li, H., Yang, Y.: The adaptive finite element method based on multi-scale discretizations for eigenvalue problems. Comput. Math. Appl. 65, 1086–1102 (2013)MathSciNetCrossRefMATH Li, H., Yang, Y.: The adaptive finite element method based on multi-scale discretizations for eigenvalue problems. Comput. Math. Appl. 65, 1086–1102 (2013)MathSciNetCrossRefMATH
26.
27.
go back to reference Liu, H., Yan, N.: Enhancing finite element approximation for eigenvalue problems by projection method. Comput. Methods Appl. Mech. Eng. 233–236, 81–91 (2012)MathSciNetCrossRefMATH Liu, H., Yan, N.: Enhancing finite element approximation for eigenvalue problems by projection method. Comput. Methods Appl. Mech. Eng. 233–236, 81–91 (2012)MathSciNetCrossRefMATH
28.
go back to reference Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38, 608–625 (2000)MathSciNetCrossRefMATH Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38, 608–625 (2000)MathSciNetCrossRefMATH
29.
go back to reference Mao, M., Shen, L., Zhou, A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimators. Adv. Comput. Math. 25, 135–160 (2006)MathSciNetCrossRefMATH Mao, M., Shen, L., Zhou, A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimators. Adv. Comput. Math. 25, 135–160 (2006)MathSciNetCrossRefMATH
30.
go back to reference Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18, 387–409 (2011)MathSciNetCrossRefMATH Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18, 387–409 (2011)MathSciNetCrossRefMATH
31.
32.
go back to reference Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42, 1780–1800 (2004)MathSciNetCrossRefMATH Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42, 1780–1800 (2004)MathSciNetCrossRefMATH
33.
go back to reference Naga, A., Zhang, Z.: The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin. Dyn. Syst. Ser. B 5, 769–798 (2005)MathSciNetCrossRefMATH Naga, A., Zhang, Z.: The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin. Dyn. Syst. Ser. B 5, 769–798 (2005)MathSciNetCrossRefMATH
34.
go back to reference Naga, A., Zhang, Z., Zhou, A.: Enhancing eigenvalue approximation by gradient recovery. SIAM J. Sci. Comput. 28, 1289–1300 (2006)MathSciNetCrossRefMATH Naga, A., Zhang, Z., Zhou, A.: Enhancing eigenvalue approximation by gradient recovery. SIAM J. Sci. Comput. 28, 1289–1300 (2006)MathSciNetCrossRefMATH
36.
37.
go back to reference Shen, L., Zhou, A.: A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J. Sci. Comput. 28, 321–338 (2006)MathSciNetCrossRefMATH Shen, L., Zhou, A.: A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J. Sci. Comput. 28, 321–338 (2006)MathSciNetCrossRefMATH
38.
go back to reference Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1973) Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1973)
39.
go back to reference Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley and Teubner, New York (1996)MATH Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley and Teubner, New York (1996)MATH
40.
go back to reference Wu, H., Zhang, Z.: Enhancing eigenvalue approximation by gradient recovery on adaptive meshes. IMA J. Numer. Anal. 29, 1008–1022 (2009)MathSciNetCrossRefMATH Wu, H., Zhang, Z.: Enhancing eigenvalue approximation by gradient recovery on adaptive meshes. IMA J. Numer. Anal. 29, 1008–1022 (2009)MathSciNetCrossRefMATH
43.
go back to reference Yang, Y., Bi, H.: Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49, 1602–1624 (2011)MathSciNetCrossRefMATH Yang, Y., Bi, H.: Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49, 1602–1624 (2011)MathSciNetCrossRefMATH
44.
go back to reference Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements. Sci. China Math. 53, 137–150 (2010)MathSciNetCrossRefMATH Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements. Sci. China Math. 53, 137–150 (2010)MathSciNetCrossRefMATH
45.
go back to reference Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)MathSciNetCrossRefMATH Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)MathSciNetCrossRefMATH
46.
go back to reference Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s element(Chinese). Math. Numer. Sin. 29, 319–321 (2007)MathSciNetMATH Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s element(Chinese). Math. Numer. Sin. 29, 319–321 (2007)MathSciNetMATH
47.
go back to reference Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)MathSciNetCrossRefMATH Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)MathSciNetCrossRefMATH
Metadata
Title
Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
Authors
Hailong Guo
Zhimin Zhang
Ren Zhao
Publication date
16-07-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0245-2

Other articles of this Issue 1/2017

Journal of Scientific Computing 1/2017 Go to the issue

Premium Partner