Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2016

29-12-2015

Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading

Authors: Z. M. Jiao, S. G. Ma, M. Y. Chu, H. J. Yang, Z. H. Wang, Y. Zhang, J. W. Qiao

Published in: Journal of Materials Engineering and Performance | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-entropy alloys with composition of AlCoCrFeNiTi x (x: molar ratio; x = 0, 0.2, 0.4) under quasi-static and dynamic compression exhibit excellent mechanical properties. A positive strain-rate sensitivity of yield strength and the strong work-hardening behavior during plastic flows dominate upon dynamic loading in the present alloy system. The constitutive relationships are extracted to model flow behaviors by employing the Johnson-Cook constitutive model. Upon dynamic loading, the ultimate strength and fracture strain of AlCoCrFeNiTi x alloys are superior to most of bulk metallic glasses and in situ metallic glass matrix composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158CrossRef B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158CrossRef
2.
go back to reference Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3, p 1455 Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3, p 1455
3.
go back to reference M.A. Hemphilla, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue Behavior of Al0.5CoCrCuFeNi High Entropy Alloys, Acta Mater., 2012, 60, p 5723–5734CrossRef M.A. Hemphilla, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue Behavior of Al0.5CoCrCuFeNi High Entropy Alloys, Acta Mater., 2012, 60, p 5723–5734CrossRef
4.
go back to reference O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765CrossRef O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765CrossRef
5.
go back to reference C. Huang, Y.Z. Zhang, J.Y. Shen, and R. Vilar, Thermal Stability and Oxidation Resistance of Laser Clad TiVCrAlSi High Entropy Alloy Coatings on Ti-6A1-4V Alloy, Surf. Coat. Technol., 2011, 206, p 1389–1395CrossRef C. Huang, Y.Z. Zhang, J.Y. Shen, and R. Vilar, Thermal Stability and Oxidation Resistance of Laser Clad TiVCrAlSi High Entropy Alloy Coatings on Ti-6A1-4V Alloy, Surf. Coat. Technol., 2011, 206, p 1389–1395CrossRef
6.
go back to reference M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and Wear Behavior of Al x Co1.5CrFeNi1.5Ti y High-Entropy Alloys, Acta Mater., 2011, 59, p 6308–6317CrossRef M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and Wear Behavior of Al x Co1.5CrFeNi1.5Ti y High-Entropy Alloys, Acta Mater., 2011, 59, p 6308–6317CrossRef
7.
go back to reference O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706CrossRef O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706CrossRef
8.
go back to reference Y. Yu, J. Wang, J.S. Li, H.C. Kou, and W.M. Liu, Characterization of BCC Phases in AlCoCrFeNiTi x High Entropy Alloys, Mater. Lett., 2015, 138, p 78–80CrossRef Y. Yu, J. Wang, J.S. Li, H.C. Kou, and W.M. Liu, Characterization of BCC Phases in AlCoCrFeNiTi x High Entropy Alloys, Mater. Lett., 2015, 138, p 78–80CrossRef
9.
go back to reference Y.J. Zhou, Y. Zhang, T.N. Kim, and J.L. Chen, Microstructure Characterizations and Strengthening Mechanism of Multi-principal Component AlCoCrFeNiTi0.5 Solid Solution Alloy with Excellent Mechanical Properties, Mater. Lett., 2008, 62, p 2673–2676CrossRef Y.J. Zhou, Y. Zhang, T.N. Kim, and J.L. Chen, Microstructure Characterizations and Strengthening Mechanism of Multi-principal Component AlCoCrFeNiTi0.5 Solid Solution Alloy with Excellent Mechanical Properties, Mater. Lett., 2008, 62, p 2673–2676CrossRef
10.
go back to reference V. Soare, D. Mitrica, I. Constantin, V. Badilita, F. Stoiciu, A.-M.J. Popescu, and I. Carcea, Influence of Remelting on Microstructure, Hardness and Corrosion Behaviour of AlCoCrFeNiTi High Entropy Alloy, Mater. Sci. Technol., 2015, 31, p 1194–1200CrossRef V. Soare, D. Mitrica, I. Constantin, V. Badilita, F. Stoiciu, A.-M.J. Popescu, and I. Carcea, Influence of Remelting on Microstructure, Hardness and Corrosion Behaviour of AlCoCrFeNiTi High Entropy Alloy, Mater. Sci. Technol., 2015, 31, p 1194–1200CrossRef
11.
go back to reference S. Liu, M.C. Gao, P.K. Liaw, and Y. Zhang, Microstructures and Mechanical Properties of Al x CrFeNiTi0.25 Alloys, J. Alloy Compd., 2015, 619, p 610–615CrossRef S. Liu, M.C. Gao, P.K. Liaw, and Y. Zhang, Microstructures and Mechanical Properties of Al x CrFeNiTi0.25 Alloys, J. Alloy Compd., 2015, 619, p 610–615CrossRef
12.
go back to reference Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93CrossRef Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93CrossRef
13.
go back to reference B. Cantor, I. Chang, P. Knight, and A. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375, p 213–218CrossRef B. Cantor, I. Chang, P. Knight, and A. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375, p 213–218CrossRef
14.
go back to reference Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTi x with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904CrossRef Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTi x with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904CrossRef
15.
go back to reference Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, and J.W. Qiao, Optimizing Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys by Tailoring Microstructures, Acta Metall. Sin., 2013, 26, p 277–284CrossRef Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, and J.W. Qiao, Optimizing Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys by Tailoring Microstructures, Acta Metall. Sin., 2013, 26, p 277–284CrossRef
16.
go back to reference K.B. Zhang and Z.Y. Fu, Effects of Annealing Treatment on Phase Composition and Microstructure of CoCrFeNiTiAl x High-Entropy Alloys, Intermetallics, 2012, 22, p 24–32CrossRef K.B. Zhang and Z.Y. Fu, Effects of Annealing Treatment on Phase Composition and Microstructure of CoCrFeNiTiAl x High-Entropy Alloys, Intermetallics, 2012, 22, p 24–32CrossRef
17.
go back to reference J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures, Mater. Sci. Forum, 2011, 688, p 419–425CrossRef J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures, Mater. Sci. Forum, 2011, 688, p 419–425CrossRef
18.
go back to reference R.Q. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 1999, 15, p 963–980CrossRef R.Q. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 1999, 15, p 963–980CrossRef
19.
go back to reference Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, and P.K. Liaw, Tensile ductility of an AlCoCrFeNi Multi-phase High-Entropy Alloy Through Hot Isostatic Pressing (HIP) and Homogenization, Mater. Sci. Eng. A, 2015, 647, p 229–240CrossRef Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, and P.K. Liaw, Tensile ductility of an AlCoCrFeNi Multi-phase High-Entropy Alloy Through Hot Isostatic Pressing (HIP) and Homogenization, Mater. Sci. Eng. A, 2015, 647, p 229–240CrossRef
20.
go back to reference J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290 J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290
21.
go back to reference W.S. Lee, C.Y. Liu, and T.N. Sun, Deformation Behavior of Inconel 690 Super Alloy Evaluated by Impact Test, J. Mater. Process. Technol., 2004, 153, p 219–225CrossRef W.S. Lee, C.Y. Liu, and T.N. Sun, Deformation Behavior of Inconel 690 Super Alloy Evaluated by Impact Test, J. Mater. Process. Technol., 2004, 153, p 219–225CrossRef
22.
go back to reference W.S. Lee, C.Y. Liu, and T.N. Sun, Dynamic Impact Response and Microstructural Evolution of Inconel 690 Superalloy at Elevated Temperatures, Int. J. Impact Eng., 2005, 32, p 210–223CrossRef W.S. Lee, C.Y. Liu, and T.N. Sun, Dynamic Impact Response and Microstructural Evolution of Inconel 690 Superalloy at Elevated Temperatures, Int. J. Impact Eng., 2005, 32, p 210–223CrossRef
23.
go back to reference M.M. Trexler and N.N. Thadhani, Mechanical Properties of Bulk Metallic Glasses, Prog. Mater. Sci., 2010, 55, p 759–839CrossRef M.M. Trexler and N.N. Thadhani, Mechanical Properties of Bulk Metallic Glasses, Prog. Mater. Sci., 2010, 55, p 759–839CrossRef
24.
go back to reference M. Ferry, K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu, and O. Biletska, Recent Developments in Ductile Bulk Metallic Glass Composites, MRS Commun., 2013, 3, p 1–12CrossRef M. Ferry, K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu, and O. Biletska, Recent Developments in Ductile Bulk Metallic Glass Composites, MRS Commun., 2013, 3, p 1–12CrossRef
25.
go back to reference R.W. Armstrong and S.M. Walley, High Strain Rate Properties of Metals and Alloys, Int. Mater. Rev., 2008, 53, p 105–128CrossRef R.W. Armstrong and S.M. Walley, High Strain Rate Properties of Metals and Alloys, Int. Mater. Rev., 2008, 53, p 105–128CrossRef
26.
go back to reference J.W. Qiao, M.Y. Chu, L. Cheng, H.Y. Ye, H.J. Yang, S.G. Ma, and Z.H. Wang, Plastic Flows of In-Situ Metallic Glass Matrix Composites upon Dynamic Loading, Mater. Lett., 2014, 119, p 92–95CrossRef J.W. Qiao, M.Y. Chu, L. Cheng, H.Y. Ye, H.J. Yang, S.G. Ma, and Z.H. Wang, Plastic Flows of In-Situ Metallic Glass Matrix Composites upon Dynamic Loading, Mater. Lett., 2014, 119, p 92–95CrossRef
27.
go back to reference H. Li, G. Subhash, L.J. Kecskes, and R.J. Dowding, Mechanical Behavior of Tungsten Preform Reinforced Bulk Metallic Glass Composites, Mater. Sci. Eng. A, 2005, 403, p 134–143CrossRef H. Li, G. Subhash, L.J. Kecskes, and R.J. Dowding, Mechanical Behavior of Tungsten Preform Reinforced Bulk Metallic Glass Composites, Mater. Sci. Eng. A, 2005, 403, p 134–143CrossRef
28.
go back to reference G.R. Johnson and W. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48CrossRef G.R. Johnson and W. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48CrossRef
29.
go back to reference N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High Strain-Rate Compressive Deformation Behavior of the Al0.1CrFeCoNi High Entropy Alloy, Mater. Des., 2015, 86, p 598–602 N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, High Strain-Rate Compressive Deformation Behavior of the Al0.1CrFeCoNi High Entropy Alloy, Mater. Des., 2015, 86, p 598–602
30.
go back to reference S.G. Ma, Z.M. Jiao, J.W. Qiao, H.J. Yang, Y. Zhang, and Z.H. Wang, Strain Rate Effects on the Dynamic Mechanical Properties of the AlCrCuFeNi2 High-Entropy Alloy, Mater. Sci. Eng. A, 2016, 649, p 35–38CrossRef S.G. Ma, Z.M. Jiao, J.W. Qiao, H.J. Yang, Y. Zhang, and Z.H. Wang, Strain Rate Effects on the Dynamic Mechanical Properties of the AlCrCuFeNi2 High-Entropy Alloy, Mater. Sci. Eng. A, 2016, 649, p 35–38CrossRef
31.
go back to reference M.Q. Jiang, Z. Ling, J.X. Meng, and L.H. Dai, Energy Dissipation in Fracture of Bulk Metallic Glasses via Inherent Competition Between Local Softening and Quasi-cleavage, Philos. Mag., 2008, 88, p 407–426CrossRef M.Q. Jiang, Z. Ling, J.X. Meng, and L.H. Dai, Energy Dissipation in Fracture of Bulk Metallic Glasses via Inherent Competition Between Local Softening and Quasi-cleavage, Philos. Mag., 2008, 88, p 407–426CrossRef
32.
go back to reference W.F. Ma, H.C. Kou, J.S. Li, H. Chang, and L. Zhou, Effect of Strain Rate on Compressive Behavior of Ti-Based Bulk Metallic Glass at Room Temperature, J. Alloys Compd., 2009, 472, p 214–218CrossRef W.F. Ma, H.C. Kou, J.S. Li, H. Chang, and L. Zhou, Effect of Strain Rate on Compressive Behavior of Ti-Based Bulk Metallic Glass at Room Temperature, J. Alloys Compd., 2009, 472, p 214–218CrossRef
33.
go back to reference G. Sunny, J. Lewandowski, and V. Prikash, Effects of Annealing and Specimen Geometry on Dynamic Compression of a Zr-Based Bulk Metallic Glass, J. Mater. Res., 2007, 22, p 389–401CrossRef G. Sunny, J. Lewandowski, and V. Prikash, Effects of Annealing and Specimen Geometry on Dynamic Compression of a Zr-Based Bulk Metallic Glass, J. Mater. Res., 2007, 22, p 389–401CrossRef
34.
go back to reference G. Subhash, R.J. Dowding, and L.J. Kecskes, Characterization of Uniaxial Compressive Response of Bulk Amorphous Zr–Ti–Cu–Ni–Be Alloy, Mater. Sci. Eng. A, 2002, 334, p 33–40CrossRef G. Subhash, R.J. Dowding, and L.J. Kecskes, Characterization of Uniaxial Compressive Response of Bulk Amorphous Zr–Ti–Cu–Ni–Be Alloy, Mater. Sci. Eng. A, 2002, 334, p 33–40CrossRef
35.
go back to reference Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang, Effect of Loading Rate on Failure in Zr-Based Bulk Metallic Glass, Mater. Sci. Eng. A, 2008, 473, p 105–110CrossRef Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang, Effect of Loading Rate on Failure in Zr-Based Bulk Metallic Glass, Mater. Sci. Eng. A, 2008, 473, p 105–110CrossRef
36.
go back to reference J.W. Qiao, P. Feng, Y. Zhang, Q.M. Zhang, P.K. Liaw, and G.L. Chen, Quasi-static and Dynamic Deformation Behaviors of In Situ Zr-Based Bulk-Metallic-Glass-Matrix Composites, J. Mater. Res., 2010, 25, p 2264–2270CrossRef J.W. Qiao, P. Feng, Y. Zhang, Q.M. Zhang, P.K. Liaw, and G.L. Chen, Quasi-static and Dynamic Deformation Behaviors of In Situ Zr-Based Bulk-Metallic-Glass-Matrix Composites, J. Mater. Res., 2010, 25, p 2264–2270CrossRef
37.
go back to reference J.W. Qiao, H.Y. Ye, Y.S. Wang, S. Pauly, H.J. Yang, and Z.H. Wang, Distinguished Work-Hardening Capacity of a Ti-Based Metallic Glass Matrix Composite upon Dynamic Loading, Mater. Sci. Eng. A, 2013, 585, p 277–280CrossRef J.W. Qiao, H.Y. Ye, Y.S. Wang, S. Pauly, H.J. Yang, and Z.H. Wang, Distinguished Work-Hardening Capacity of a Ti-Based Metallic Glass Matrix Composite upon Dynamic Loading, Mater. Sci. Eng. A, 2013, 585, p 277–280CrossRef
38.
go back to reference Y.S. Wang, G.J. Hao, J.W. Qiao, Y. Zhang, and J.P. Lin, High Strain Rate Compressive Behavior of Ti-Based Metallic Glass Matrix Composites, Intermetallics, 2014, 52, p 138–143CrossRef Y.S. Wang, G.J. Hao, J.W. Qiao, Y. Zhang, and J.P. Lin, High Strain Rate Compressive Behavior of Ti-Based Metallic Glass Matrix Composites, Intermetallics, 2014, 52, p 138–143CrossRef
39.
go back to reference Y.S. Wang, G.J. Hao, R. Ma, Y. Zhang, J.P. Lin, Z.H. Wang, and J.W. Qiao, Quasi-static and Dynamic Compression Behaviors of Metallic Glass Matrix Composites, Intermetallics, 2015, 60, p 66–71CrossRef Y.S. Wang, G.J. Hao, R. Ma, Y. Zhang, J.P. Lin, Z.H. Wang, and J.W. Qiao, Quasi-static and Dynamic Compression Behaviors of Metallic Glass Matrix Composites, Intermetallics, 2015, 60, p 66–71CrossRef
40.
go back to reference Y. Kim, S.Y. Shin, J.S. Kim, H. Huh, K.J. Kim, and S. Lee, Dynamic Deformation Behavior of Zr-Based Amorphous Alloy Matrix Composites Reinforced with STS304 or Tantalum Fibers, Metall. Mater. Trans. A, 2012, 43, p 3023–3033CrossRef Y. Kim, S.Y. Shin, J.S. Kim, H. Huh, K.J. Kim, and S. Lee, Dynamic Deformation Behavior of Zr-Based Amorphous Alloy Matrix Composites Reinforced with STS304 or Tantalum Fibers, Metall. Mater. Trans. A, 2012, 43, p 3023–3033CrossRef
41.
go back to reference M. Martin, L. Meyer, L. Kecskes, and N.N. Thadhani, Uniaxial and Biaxial Compressive Response of a Bulk Metallic Glass Composite Over a Range of Strain Rates and Temperatures, J. Mater. Res., 2009, 24, p 66–78CrossRef M. Martin, L. Meyer, L. Kecskes, and N.N. Thadhani, Uniaxial and Biaxial Compressive Response of a Bulk Metallic Glass Composite Over a Range of Strain Rates and Temperatures, J. Mater. Res., 2009, 24, p 66–78CrossRef
42.
go back to reference C. Chen, Y. Xue, L. Wang, X. Cheng, F. Wang, Z. Wang, H. Zhang, and A. Wang, Effect of Temperature on the Dynamic Mechanical Behaviors of Zr-Based Metallic Glass Reinforced Porous Tungsten Matrix Composite, Adv. Eng. Mater., 2012, 14, p 439–444CrossRef C. Chen, Y. Xue, L. Wang, X. Cheng, F. Wang, Z. Wang, H. Zhang, and A. Wang, Effect of Temperature on the Dynamic Mechanical Behaviors of Zr-Based Metallic Glass Reinforced Porous Tungsten Matrix Composite, Adv. Eng. Mater., 2012, 14, p 439–444CrossRef
43.
go back to reference C.-Y. Son, G.S. Kim, S.-B. Lee, S.-K. Lee, H.S. Kim, and S. Lee, Correlation of Microstructure with Mechanical Properties of Zr-Based Amorphous Matrix Composite Reinforced with Tungsten Continuous Fibers and Ductile Dendrites, Metall. Mater. Trans. A, 2012, 43, p 4088–4096CrossRef C.-Y. Son, G.S. Kim, S.-B. Lee, S.-K. Lee, H.S. Kim, and S. Lee, Correlation of Microstructure with Mechanical Properties of Zr-Based Amorphous Matrix Composite Reinforced with Tungsten Continuous Fibers and Ductile Dendrites, Metall. Mater. Trans. A, 2012, 43, p 4088–4096CrossRef
44.
go back to reference E.B. Zaretsky, G.I. Kanel, S.V. Razorenov, and K. Baumung, Impact Strength Properties of Nickel-Based Refractory Superalloys at NORMAL and Elevated Temperatures, Int. J. Impact Eng., 2005, 31, p 41–54CrossRef E.B. Zaretsky, G.I. Kanel, S.V. Razorenov, and K. Baumung, Impact Strength Properties of Nickel-Based Refractory Superalloys at NORMAL and Elevated Temperatures, Int. J. Impact Eng., 2005, 31, p 41–54CrossRef
45.
go back to reference Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200CrossRef Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200CrossRef
46.
go back to reference L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, and T.J. Li, Annealing Effects on the Microstructure and Properties of Bulk High-Entropy CoCrFeNiTi0.5 Alloy Casting Ingot, Intermetallics, 2014, 44, p 37–43CrossRef L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, and T.J. Li, Annealing Effects on the Microstructure and Properties of Bulk High-Entropy CoCrFeNiTi0.5 Alloy Casting Ingot, Intermetallics, 2014, 44, p 37–43CrossRef
47.
go back to reference Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of Vanadium Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72CrossRef Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of Vanadium Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72CrossRef
48.
go back to reference Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and Mechanical Properties of Multi-component AlCrFeNiMo x High-Entropy Alloys, J. Alloys Compd., 2013, 573, p 96–101CrossRef Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and Mechanical Properties of Multi-component AlCrFeNiMo x High-Entropy Alloys, J. Alloys Compd., 2013, 573, p 96–101CrossRef
Metadata
Title
Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading
Authors
Z. M. Jiao
S. G. Ma
M. Y. Chu
H. J. Yang
Z. H. Wang
Y. Zhang
J. W. Qiao
Publication date
29-12-2015
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1869-3

Other articles of this Issue 2/2016

Journal of Materials Engineering and Performance 2/2016 Go to the issue

Premium Partners