Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2016

14-01-2016

The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

Authors: S. X. Liang, L. X. Yin, L. Y. Zheng, M. Z. Ma, R. P. Liu

Published in: Journal of Materials Engineering and Performance | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879CrossRef D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879CrossRef
2.
go back to reference Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46, p 552–560CrossRef Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46, p 552–560CrossRef
3.
go back to reference A. Ishida, M. Sato, and Z.Y. Gao, Effects of Ti Content on Microstructure and Shape Memory Behavior of TixNi(84.5−x)Cu15.5 (x = 44.6–55.4) Thin Films, Acta Mater., 2014, 69, p 292–300CrossRef A. Ishida, M. Sato, and Z.Y. Gao, Effects of Ti Content on Microstructure and Shape Memory Behavior of TixNi(84.5−x)Cu15.5 (x = 44.6–55.4) Thin Films, Acta Mater., 2014, 69, p 292–300CrossRef
4.
go back to reference Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, and Q.D. Wang, Development of Ti–Cr–Mn–Fe Based Alloys with High Hydrogen Desorption Pressures for Hybrid Hydrogen Storage Vessel Application, Int. J. Hydrog. Energy, 2013, 38, p 12803–12810CrossRef Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, and Q.D. Wang, Development of Ti–Cr–Mn–Fe Based Alloys with High Hydrogen Desorption Pressures for Hybrid Hydrogen Storage Vessel Application, Int. J. Hydrog. Energy, 2013, 38, p 12803–12810CrossRef
5.
go back to reference S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu, Microstructure and Mechanical Properties of Hot-Rolled ZrTiAlV Alloys, Mater. Sci. Eng. A, 2012, 532, p 1–5CrossRef S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu, Microstructure and Mechanical Properties of Hot-Rolled ZrTiAlV Alloys, Mater. Sci. Eng. A, 2012, 532, p 1–5CrossRef
6.
go back to reference R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Structure and Mechanical Properties of Ti–6Al–4V Alloy After Zirconium Addition, Mater. Sci. Eng. A, 2012, 552, p 295–300CrossRef R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Structure and Mechanical Properties of Ti–6Al–4V Alloy After Zirconium Addition, Mater. Sci. Eng. A, 2012, 552, p 295–300CrossRef
7.
go back to reference R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, and R.P. Liu, Aging Effects on the Microstructures and Mechanical Properties of the Ti–20Zr–6.5Al–4V Alloy, Mater. Sci. Eng. A, 2013, 559, p 474–479CrossRef R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, and R.P. Liu, Aging Effects on the Microstructures and Mechanical Properties of the Ti–20Zr–6.5Al–4V Alloy, Mater. Sci. Eng. A, 2013, 559, p 474–479CrossRef
8.
go back to reference S.X. Liang, M.Z. Ma, R. Jing, Y.K. Zhou, Q. Jing, and R.P. Liu, Preparation of the ZrTiAlV Alloy with Ultra-High Strength and Good Ductility, Mater. Sci. Eng. A, 2012, 539, p 42–47CrossRef S.X. Liang, M.Z. Ma, R. Jing, Y.K. Zhou, Q. Jing, and R.P. Liu, Preparation of the ZrTiAlV Alloy with Ultra-High Strength and Good Ductility, Mater. Sci. Eng. A, 2012, 539, p 42–47CrossRef
9.
go back to reference MJ Donachie Jr., Titanium: A Technical Guide, ASM international, Metals Park, 1998 MJ Donachie Jr., Titanium: A Technical Guide, ASM international, Metals Park, 1998
10.
go back to reference J.G. Eom, Y.H. Son, S.W. Jeong, S.T. Ahn, S.M. Jang, D.J. Yoon, and M.S. Joun, Effect of Strain Hardening Capability on Plastic Deformation Behaviors of Material During Metal Forming, Mater. Des., 2014, 54, p 1010–1018CrossRef J.G. Eom, Y.H. Son, S.W. Jeong, S.T. Ahn, S.M. Jang, D.J. Yoon, and M.S. Joun, Effect of Strain Hardening Capability on Plastic Deformation Behaviors of Material During Metal Forming, Mater. Des., 2014, 54, p 1010–1018CrossRef
11.
go back to reference S.Q. Wang, J.H. Liu, and D.L. Chen, Effect of Strain Rate and Temperature on Strain Hardening Behavior of a Dissimilar Joint Between Ti–6Al–4V and Ti17 Alloys, Mater. Des., 2014, 56, p 174–184CrossRef S.Q. Wang, J.H. Liu, and D.L. Chen, Effect of Strain Rate and Temperature on Strain Hardening Behavior of a Dissimilar Joint Between Ti–6Al–4V and Ti17 Alloys, Mater. Des., 2014, 56, p 174–184CrossRef
12.
go back to reference B.D. Venkatesh, D.L. Chen, and S.D. Bhole, Effect of Heat Treatment on Mechanical Properties of Ti–6Al–4V ELI, Alloy, Mater. Sci. Eng. A, 2009, 506, p 117–124CrossRef B.D. Venkatesh, D.L. Chen, and S.D. Bhole, Effect of Heat Treatment on Mechanical Properties of Ti–6Al–4V ELI, Alloy, Mater. Sci. Eng. A, 2009, 506, p 117–124CrossRef
13.
go back to reference X.R. Zuo, Y.B. Chen, and M.H. Wang, Study on Microstructures and Work Hardening Behavior of Ferrite-Martensite Dual-Phase Steels with High-Content Martensite, Mater. Res., 2012, 15, p 915–921CrossRef X.R. Zuo, Y.B. Chen, and M.H. Wang, Study on Microstructures and Work Hardening Behavior of Ferrite-Martensite Dual-Phase Steels with High-Content Martensite, Mater. Res., 2012, 15, p 915–921CrossRef
14.
go back to reference O. Ertorer, T. Topping, Y. Li, W. Moss, and E.J. Laverni, Enhanced Tensile Strength and High Ductility in Cryomilled Commercially Pure Titanium, Scr. Mater., 2009, 60, p 586–589CrossRef O. Ertorer, T. Topping, Y. Li, W. Moss, and E.J. Laverni, Enhanced Tensile Strength and High Ductility in Cryomilled Commercially Pure Titanium, Scr. Mater., 2009, 60, p 586–589CrossRef
15.
go back to reference S.X. Liang, M.Z. Ma, R. Jing, C.L. Tan, and R.P. Liu, Structural Evolution and Mechanical Properties of Zr–45Ti–5Al–3V Alloy by Heat Treatments, Mater. Sci. Eng. A, 2012, 541, p 67–72CrossRef S.X. Liang, M.Z. Ma, R. Jing, C.L. Tan, and R.P. Liu, Structural Evolution and Mechanical Properties of Zr–45Ti–5Al–3V Alloy by Heat Treatments, Mater. Sci. Eng. A, 2012, 541, p 67–72CrossRef
16.
go back to reference ISO, 6892-1, Metallic Materials: Tensile Testing—Part 1: Method of Test at Room Temperature, ISO, Brussels, 2009 ISO, 6892-1, Metallic Materials: Tensile Testing—Part 1: Method of Test at Room Temperature, ISO, Brussels, 2009
17.
go back to reference S.X. Liang, L.X. Yin, R. Jing, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Structure and Mechanical Properties of the Annealed TZAV-30 Alloy, Mater. Des., 2014, 58, p 368–373CrossRef S.X. Liang, L.X. Yin, R. Jing, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Structure and Mechanical Properties of the Annealed TZAV-30 Alloy, Mater. Des., 2014, 58, p 368–373CrossRef
18.
go back to reference J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290 J.H. Hollomon, Tensile Deformation, Trans. AIME, 1945, 162, p 268–290
19.
go back to reference M. Premkumar and A.K. Singh, Deformation Behavior of an Ordered B2 Phase in Ti–25Al–25Zr Alloy, Intermetallics, 2010, 18, p 199–201CrossRef M. Premkumar and A.K. Singh, Deformation Behavior of an Ordered B2 Phase in Ti–25Al–25Zr Alloy, Intermetallics, 2010, 18, p 199–201CrossRef
20.
go back to reference Z. Yu and L. Zhou, Influence of Martensitic Transformation on Mechanical Compatibility of Biomedical β Type Titanium Alloy TLM, Mater. Sci. Eng. A, 2006, 391, p 438–440 Z. Yu and L. Zhou, Influence of Martensitic Transformation on Mechanical Compatibility of Biomedical β Type Titanium Alloy TLM, Mater. Sci. Eng. A, 2006, 391, p 438–440
21.
go back to reference E. Ahmad, T. Manzoor, and N. Hussain, Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel, Mater. Sci. Eng. A, 2009, 508, p 259–265CrossRef E. Ahmad, T. Manzoor, and N. Hussain, Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel, Mater. Sci. Eng. A, 2009, 508, p 259–265CrossRef
22.
go back to reference A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin, Strain Hardening Due to Deformation Twinning in α-Titanium: Mechanisms, Metall. Mater. Trans. A, 2006, 37, p 259–268CrossRef A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin, Strain Hardening Due to Deformation Twinning in α-Titanium: Mechanisms, Metall. Mater. Trans. A, 2006, 37, p 259–268CrossRef
23.
go back to reference S.X. Liang, L.X. Yin, R. Jing, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Deformation Mechanisms of a ZrTiAlV Alloy with Two Ductile Phases, J. Mater. Res., 2013, 28, p 2715–2719CrossRef S.X. Liang, L.X. Yin, R. Jing, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Deformation Mechanisms of a ZrTiAlV Alloy with Two Ductile Phases, J. Mater. Res., 2013, 28, p 2715–2719CrossRef
24.
go back to reference N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, and D.L. Chen, Influence of Yttrium Content on Phase Formation and Strain Hardening Behavior of Mg–Zn–Mn Magnesium Alloy, J. Alloys Compd., 2014, 615, p 424–432CrossRef N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, and D.L. Chen, Influence of Yttrium Content on Phase Formation and Strain Hardening Behavior of Mg–Zn–Mn Magnesium Alloy, J. Alloys Compd., 2014, 615, p 424–432CrossRef
25.
go back to reference B.S. Wang, R.L. Xin, G.J. Huang, and Q. Liu, Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 During Uniaxial Compression, Mater. Sci. Eng. A, 2012, 534, p 588–593CrossRef B.S. Wang, R.L. Xin, G.J. Huang, and Q. Liu, Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 During Uniaxial Compression, Mater. Sci. Eng. A, 2012, 534, p 588–593CrossRef
26.
go back to reference D. Sarker and D.L. Chen, Detwinning and Strain Hardening of an Extruded Magnesium Alloy During Compression, Scr. Mater., 2012, 67, p 165–168CrossRef D. Sarker and D.L. Chen, Detwinning and Strain Hardening of an Extruded Magnesium Alloy During Compression, Scr. Mater., 2012, 67, p 165–168CrossRef
27.
go back to reference J.W. Won, C.H. Park, S.G. Hong, and C.S. Lee, Deformation Anisotropy and Associated Mechanisms in Rolling Textured High Purity Titanium, J. Alloys Compd., 2015, 651, p 245–254CrossRef J.W. Won, C.H. Park, S.G. Hong, and C.S. Lee, Deformation Anisotropy and Associated Mechanisms in Rolling Textured High Purity Titanium, J. Alloys Compd., 2015, 651, p 245–254CrossRef
28.
go back to reference S.X. Liang, L.X. Yin, X.Y. Liu, X.L. Zhang, M.Z. Ma, R.P. Liu, and C.L. Tan, Microstructure Evolution and Mechanical Properties Response of a TZAV Alloy During Combined Thermomechanical Treatments, Mater. Sci. Eng. A, 2014, 619, p 87–94CrossRef S.X. Liang, L.X. Yin, X.Y. Liu, X.L. Zhang, M.Z. Ma, R.P. Liu, and C.L. Tan, Microstructure Evolution and Mechanical Properties Response of a TZAV Alloy During Combined Thermomechanical Treatments, Mater. Sci. Eng. A, 2014, 619, p 87–94CrossRef
29.
go back to reference S. Neelakantan, E.I. Galindo-Nava, D.S. Martin, J. Chao, and P.E.J. Rivera-Díaz-del-Castillo, Modelling and Design of Stress-Induced Martensite Formation in Metastable β Ti Alloys, Mater. Sci. Eng. A, 2014, 590, p 140–146CrossRef S. Neelakantan, E.I. Galindo-Nava, D.S. Martin, J. Chao, and P.E.J. Rivera-Díaz-del-Castillo, Modelling and Design of Stress-Induced Martensite Formation in Metastable β Ti Alloys, Mater. Sci. Eng. A, 2014, 590, p 140–146CrossRef
30.
go back to reference S. Hanada, N. Masahashi, and T.K. Jung, Effect of Stress-Induced α″ Martensite on Young’s Modulus of β Ti-33.6Nb-4Sn Alloy, Mater. Sci. Eng. A, 2013, 588, p 403–410CrossRef S. Hanada, N. Masahashi, and T.K. Jung, Effect of Stress-Induced α″ Martensite on Young’s Modulus of β Ti-33.6Nb-4Sn Alloy, Mater. Sci. Eng. A, 2013, 588, p 403–410CrossRef
31.
go back to reference Z. Wyatt and S. Ankem, The Effect of Metastability on Room Temperature Deformation Behavior of β and α + β Titanium Alloys, J. Mater. Sci., 2010, 45, p 5022–5031CrossRef Z. Wyatt and S. Ankem, The Effect of Metastability on Room Temperature Deformation Behavior of β and α + β Titanium Alloys, J. Mater. Sci., 2010, 45, p 5022–5031CrossRef
32.
go back to reference C. Li, J.H. Chen, X. Wu, W. Wang, and S. Zwaag, Tuning the Stress Induced Martensitic Formation in Titanium Alloys by Alloy Design, J. Mater. Sci., 2012, 47, p 4093–4100CrossRef C. Li, J.H. Chen, X. Wu, W. Wang, and S. Zwaag, Tuning the Stress Induced Martensitic Formation in Titanium Alloys by Alloy Design, J. Mater. Sci., 2012, 47, p 4093–4100CrossRef
33.
go back to reference R.J. Hill and C.J. Howard, Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method, J. Appl. Cryst., 1987, 20, p 467–474CrossRef R.J. Hill and C.J. Howard, Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method, J. Appl. Cryst., 1987, 20, p 467–474CrossRef
34.
go back to reference U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater Sci., 2003, 48, p 171–273CrossRef U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater Sci., 2003, 48, p 171–273CrossRef
35.
go back to reference J.H. Lee, T.B. Holland, A.K. Mukherjee, X.H. Zhang, and H.Y. Wang, Direct Observation of Lomer-Cottrell Locks During Strain Hardening in Nanocrystalline Nickel by In Situ TEM, Sci. Rep., 1061, 2013(3), p 1–6 J.H. Lee, T.B. Holland, A.K. Mukherjee, X.H. Zhang, and H.Y. Wang, Direct Observation of Lomer-Cottrell Locks During Strain Hardening in Nanocrystalline Nickel by In Situ TEM, Sci. Rep., 1061, 2013(3), p 1–6
36.
go back to reference D.S. Kang, N. Koga, M. Sakata, N. Nakada, T. Tsuchiyama, and S. Takaki, Enhanced Work Hardening by Redistribution of Oxygen in (α + β)-Type Ti–4Cr–0.2O Alloys, Mater. Sci. Eng. A, 2014, 606, p 101–107CrossRef D.S. Kang, N. Koga, M. Sakata, N. Nakada, T. Tsuchiyama, and S. Takaki, Enhanced Work Hardening by Redistribution of Oxygen in (α + β)-Type Ti–4Cr–0.2O Alloys, Mater. Sci. Eng. A, 2014, 606, p 101–107CrossRef
37.
go back to reference D.K. Yang, P.D. Hodgson, and C.E. Wen, Simultaneously Enhanced Strength and Ductility of Titanium Via Multimodal Grain Structure, Scr. Mater., 2010, 63, p 941–944CrossRef D.K. Yang, P.D. Hodgson, and C.E. Wen, Simultaneously Enhanced Strength and Ductility of Titanium Via Multimodal Grain Structure, Scr. Mater., 2010, 63, p 941–944CrossRef
38.
go back to reference Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18, p 2280–2283CrossRef Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18, p 2280–2283CrossRef
39.
go back to reference R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189CrossRef R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189CrossRef
40.
go back to reference Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and E. Ma, Adiabatic Shear Banding in Ultrafine-Grained Fe Processed by Severe Plastic Deformation, Acta Mater., 2004, 52, p 1859–1869CrossRef Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, and E. Ma, Adiabatic Shear Banding in Ultrafine-Grained Fe Processed by Severe Plastic Deformation, Acta Mater., 2004, 52, p 1859–1869CrossRef
Metadata
Title
The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments
Authors
S. X. Liang
L. X. Yin
L. Y. Zheng
M. Z. Ma
R. P. Liu
Publication date
14-01-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1892-z

Other articles of this Issue 2/2016

Journal of Materials Engineering and Performance 2/2016 Go to the issue

Premium Partners