Skip to main content
Top
Published in: Journal of Materials Science 16/2019

13-05-2019 | Electronic materials

Surfactant-free carbon black@graphene conductive ink for flexible electronics

Authors: Xinbin Qiu, Xiaomin Zhao, Feixiang Liu, Songlin Chen, Jianfeng Xu, Guohua Chen

Published in: Journal of Materials Science | Issue 16/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The capabilities of conductive ink with both excellent conductivity and flexibility properties are extremely important for the construction of next-generation flexible electronic devices. However, the development of an appropriate ink possessing high conductivity and good dispersity remains a big challenge for ink-jet printing. Here, an original synthesis method of surfactant-free carbon black@graphene (CB@rGO) conductive ink is reported via freeze-drying process and reduction in p-phenylenediamine. The CB@rGO ink unambiguously displays a well-defined and smooth morphology, extremely the CB@rGO conductive particles showing good stability in many solvents. The CB@rGO film exhibited outstanding flexibility which is showed by the durable conductivity after bending 1000 times. Furthermore, it has an excellent conductivity of 714 ± 90 S m−1, and these data increased to 5091 ± 200 S m−1 after the high temperature post-processing increased by 198% compared to the traditional rGO film. Notably, the absence of surfactant in conductive fillers’ dispersing process contributed to the high conductivity of CB@rGO ink compared with the traditional ones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Scidà A, Haque S, Treossi E, Robinson A, Smerzi S, Ravesi S, Borini S, Palermo S (2018) Application of graphene-based flexible antennas in consumer electronic devices. Mater Today 21:223–230CrossRef Scidà A, Haque S, Treossi E, Robinson A, Smerzi S, Ravesi S, Borini S, Palermo S (2018) Application of graphene-based flexible antennas in consumer electronic devices. Mater Today 21:223–230CrossRef
2.
go back to reference Cheng C, Zhang JG, Li S, Xia Y, Nie CX, Shi ZQ, Cuellar-Camacho JL, Ma N, Haag R (2017) A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers. Adv Mater 30:1705452CrossRef Cheng C, Zhang JG, Li S, Xia Y, Nie CX, Shi ZQ, Cuellar-Camacho JL, Ma N, Haag R (2017) A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers. Adv Mater 30:1705452CrossRef
3.
go back to reference Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336CrossRef Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336CrossRef
4.
go back to reference Wu HJ, Wu GL, Ren YY, Yang L, Wang LD, Li XH (2015) Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater Chem C 3:7677–7690CrossRef Wu HJ, Wu GL, Ren YY, Yang L, Wang LD, Li XH (2015) Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater Chem C 3:7677–7690CrossRef
5.
go back to reference Jia ZR, Lin KJ, Wu GL, Xing H, Wu HJ (2018) Recent progresses of high-temperature microwave-absorbing materials. NANO 13:1830005CrossRef Jia ZR, Lin KJ, Wu GL, Xing H, Wu HJ (2018) Recent progresses of high-temperature microwave-absorbing materials. NANO 13:1830005CrossRef
6.
go back to reference Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D-crystal-based functional inks. Adv Mater 28:6136–6166CrossRef Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D-crystal-based functional inks. Adv Mater 28:6136–6166CrossRef
7.
go back to reference Lee CL, Chen CH, Chen CW (2013) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302CrossRef Lee CL, Chen CH, Chen CW (2013) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302CrossRef
8.
go back to reference Li LH, Guo YZ, Zhang XY, Song YL (2014) Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. J Mater Chem A 2:19095–19101CrossRef Li LH, Guo YZ, Zhang XY, Song YL (2014) Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. J Mater Chem A 2:19095–19101CrossRef
9.
go back to reference Jia ZR, Lan D, Lin KJ, Qin M, Kou KC, Wu GL, Wu HJ (2018) Progress in low-frequency microwave absorbing materials. J Mater Sci-Mater El 29:17122–17136CrossRef Jia ZR, Lan D, Lin KJ, Qin M, Kou KC, Wu GL, Wu HJ (2018) Progress in low-frequency microwave absorbing materials. J Mater Sci-Mater El 29:17122–17136CrossRef
10.
go back to reference Zhu J, Hersam MC (2017) Assembly and electronic applications of colloidal nanomaterials. Adv Mater 29:1603895CrossRef Zhu J, Hersam MC (2017) Assembly and electronic applications of colloidal nanomaterials. Adv Mater 29:1603895CrossRef
11.
go back to reference Majee S, Liu C, Wu B, Zhang SL, Zhang ZB (2017) Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 114:77–83CrossRef Majee S, Liu C, Wu B, Zhang SL, Zhang ZB (2017) Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 114:77–83CrossRef
13.
go back to reference Chen J, Shepherd RL, Razal JM, Huang X, Zhang WM, Zhao J, Harris AT, Wang S, Minett AI, Zhang H (2007) Scalable solid-template reduction for designed reduced graphene oxide architectures. ACS Appl Mater Interfaces 5:7676–7681CrossRef Chen J, Shepherd RL, Razal JM, Huang X, Zhang WM, Zhao J, Harris AT, Wang S, Minett AI, Zhang H (2007) Scalable solid-template reduction for designed reduced graphene oxide architectures. ACS Appl Mater Interfaces 5:7676–7681CrossRef
14.
go back to reference Park S, Lee KS, Bozoklu G, Cai WW, Nguye ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef Park S, Lee KS, Bozoklu G, Cai WW, Nguye ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef
15.
go back to reference Han X, Chen Y, Zhu H, Preston C, Wan J, Fang Z, Hu L (2013) Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology 24:205304CrossRef Han X, Chen Y, Zhu H, Preston C, Wan J, Fang Z, Hu L (2013) Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology 24:205304CrossRef
16.
go back to reference Zhang ZC, Sun JJ, Lai C, Wang Q, Hu CG (2017) High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 120:411–418CrossRef Zhang ZC, Sun JJ, Lai C, Wang Q, Hu CG (2017) High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 120:411–418CrossRef
17.
go back to reference Li JT, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992CrossRef Li JT, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992CrossRef
18.
go back to reference Majee S, Song M, Zhang SL, Zhang ZB (2016) Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon 102:51–57CrossRef Majee S, Song M, Zhang SL, Zhang ZB (2016) Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon 102:51–57CrossRef
19.
go back to reference Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhmanl I, Su Y, Mesite SV, Johnstone DN, Leary RK, Midgley PA, Pugno NM, Torrisil F, Ferrari AC (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11:2742–2755CrossRef Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhmanl I, Su Y, Mesite SV, Johnstone DN, Leary RK, Midgley PA, Pugno NM, Torrisil F, Ferrari AC (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11:2742–2755CrossRef
20.
go back to reference Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
21.
go back to reference Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
22.
go back to reference Wang M, Duong LD, Oh JS, Mai NT, Kim S, Hong S, Hwang T, Lee Y, Nam JD (2014) Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6:1747–1753CrossRef Wang M, Duong LD, Oh JS, Mai NT, Kim S, Hong S, Hwang T, Lee Y, Nam JD (2014) Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6:1747–1753CrossRef
23.
go back to reference Wei D, Li HW, Han DX, Zhang QX, Niu L, Yang HF, Bower C, Andrew P, Ryhanen T (2011) Properties of graphene inks stabilized by different functional groups. Nanotechnology 22:1–7 Wei D, Li HW, Han DX, Zhang QX, Niu L, Yang HF, Bower C, Andrew P, Ryhanen T (2011) Properties of graphene inks stabilized by different functional groups. Nanotechnology 22:1–7
24.
go back to reference Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2012) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860CrossRef Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2012) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860CrossRef
25.
go back to reference Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakann A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakann A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef
26.
go back to reference Rogala M, Wlasny I, Dabrowski P, Kowalczyk PJ, Busiakiewicz A, Kozlowski W (2015) Graphene oxide overprints for flexible and transparent electronics. Appl Phys Lett 106:041901CrossRef Rogala M, Wlasny I, Dabrowski P, Kowalczyk PJ, Busiakiewicz A, Kozlowski W (2015) Graphene oxide overprints for flexible and transparent electronics. Appl Phys Lett 106:041901CrossRef
28.
go back to reference Xu LY, Yang GY, Jing HY, Wei J, Han YD (2014) Ag-graphene hybrid conductive ink for writing electronics. Nanotechnology 25:055201CrossRef Xu LY, Yang GY, Jing HY, Wei J, Han YD (2014) Ag-graphene hybrid conductive ink for writing electronics. Nanotechnology 25:055201CrossRef
29.
go back to reference Zhou M, Tian T, Li XF, Sun XD, Zhang J, Cui P, Tang J, Qin LC (2014) Production of graphene by liquid-phase exfoliation of intercalated graphite. Int J Electrochemical SC 9:810–820 Zhou M, Tian T, Li XF, Sun XD, Zhang J, Cui P, Tang J, Qin LC (2014) Production of graphene by liquid-phase exfoliation of intercalated graphite. Int J Electrochemical SC 9:810–820
30.
go back to reference He DF, Shen LM, Zhang XY, Wang YF, Bao NZ (2014) An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J 60:2757–2764CrossRef He DF, Shen LM, Zhang XY, Wang YF, Bao NZ (2014) An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J 60:2757–2764CrossRef
31.
go back to reference Szabo T, Berkesi O, Dekany I (2015) Drift study of deuterium-exchanged graphite oxide. Carbon 43:3186–3189CrossRef Szabo T, Berkesi O, Dekany I (2015) Drift study of deuterium-exchanged graphite oxide. Carbon 43:3186–3189CrossRef
32.
go back to reference Chen Y, Zhang X, Yu P, Ma YW (2019) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 30:4527–4529 Chen Y, Zhang X, Yu P, Ma YW (2019) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 30:4527–4529
33.
go back to reference Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Chang DW, Dai L, Baeka JB (2012) Edge-carboxylated graphene nanosheets via ball milling. P Natl Acad Sci USA 109:5588–5593CrossRef Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Chang DW, Dai L, Baeka JB (2012) Edge-carboxylated graphene nanosheets via ball milling. P Natl Acad Sci USA 109:5588–5593CrossRef
34.
go back to reference Jiang J, Liu FX, Zhuang KY, Chen DQ, Chen GH (2017) Composites of epoxy/graphene-modified-diamond filler show enhanced thermal conductivity and high electrical insulation. Rsc Adv 7:40761–40766CrossRef Jiang J, Liu FX, Zhuang KY, Chen DQ, Chen GH (2017) Composites of epoxy/graphene-modified-diamond filler show enhanced thermal conductivity and high electrical insulation. Rsc Adv 7:40761–40766CrossRef
35.
go back to reference He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054–5064CrossRef He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054–5064CrossRef
36.
go back to reference Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep-UK 5:10160CrossRef Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep-UK 5:10160CrossRef
37.
go back to reference Eigler S, Hu Y, Ishii Y, Andreas H (2013) Controlled functionalization of graphene oxide with sodium azide. Nanoscale 5:12136–12139CrossRef Eigler S, Hu Y, Ishii Y, Andreas H (2013) Controlled functionalization of graphene oxide with sodium azide. Nanoscale 5:12136–12139CrossRef
38.
go back to reference Jia ZR, Gao ZG, Lan D, Cheng YH, Wu GR, Wu HJ (2018) Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin Phys B 27:117806CrossRef Jia ZR, Gao ZG, Lan D, Cheng YH, Wu GR, Wu HJ (2018) Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin Phys B 27:117806CrossRef
39.
go back to reference Lan D, Qin M, Yang R, Chen S, Wu H, Fan Y, Zhang F (2019) Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J Colloid Interf Sci 533:481–491CrossRef Lan D, Qin M, Yang R, Chen S, Wu H, Fan Y, Zhang F (2019) Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J Colloid Interf Sci 533:481–491CrossRef
40.
go back to reference Faghani A, Donskyi IS, Gholami MF, Ziem B, Lippitz A, Unger WES, Bçttcher C, Rabe JP, Haag R, Adeli M (2017) Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew Chem 56:2619–2723CrossRef Faghani A, Donskyi IS, Gholami MF, Ziem B, Lippitz A, Unger WES, Bçttcher C, Rabe JP, Haag R, Adeli M (2017) Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew Chem 56:2619–2723CrossRef
41.
go back to reference Paton KR, Varrla E, Backes C, Smith RJ, UmarKhan O’Neill A, Boland C, Lotya M et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRef Paton KR, Varrla E, Backes C, Smith RJ, UmarKhan O’Neill A, Boland C, Lotya M et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRef
42.
go back to reference Arapov K, Bex G, Hendriks R, Rubingh E, Abbel R, With GD, Friedrich H (2016) Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv Eng Mater 18:1234–1239CrossRef Arapov K, Bex G, Hendriks R, Rubingh E, Abbel R, With GD, Friedrich H (2016) Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv Eng Mater 18:1234–1239CrossRef
43.
go back to reference Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29:1–8 Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29:1–8
44.
go back to reference Kölpin N, Wegener M, Teuber E, Polster S, Frey L, Roosen A (2013) Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. J Mater Sci 48:1623–1631CrossRef Kölpin N, Wegener M, Teuber E, Polster S, Frey L, Roosen A (2013) Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. J Mater Sci 48:1623–1631CrossRef
45.
go back to reference Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
46.
go back to reference Wu HJ, Qu SH, Lin KJ, Qing YC, Wang LD, Fan YC, Fu QH, Zhang HL (2018) Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol 333:153–159CrossRef Wu HJ, Qu SH, Lin KJ, Qing YC, Wang LD, Fan YC, Fu QH, Zhang HL (2018) Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol 333:153–159CrossRef
47.
go back to reference Wu HJ, Wu GL, Wang LD (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451CrossRef Wu HJ, Wu GL, Wang LD (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451CrossRef
48.
go back to reference Su R, Sun W, Tian C, Chen GH (2015) An edge-decorated submicron reduced graphite oxide nanoflakes and its composites with carbon nanotubes for transparent conducting films. Rsc Adv 5:46785–46789CrossRef Su R, Sun W, Tian C, Chen GH (2015) An edge-decorated submicron reduced graphite oxide nanoflakes and its composites with carbon nanotubes for transparent conducting films. Rsc Adv 5:46785–46789CrossRef
Metadata
Title
Surfactant-free carbon black@graphene conductive ink for flexible electronics
Authors
Xinbin Qiu
Xiaomin Zhao
Feixiang Liu
Songlin Chen
Jianfeng Xu
Guohua Chen
Publication date
13-05-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03687-2

Other articles of this Issue 16/2019

Journal of Materials Science 16/2019 Go to the issue

Premium Partners