Skip to main content
Erschienen in: Journal of Materials Science 16/2019

13.05.2019 | Electronic materials

Surfactant-free carbon black@graphene conductive ink for flexible electronics

verfasst von: Xinbin Qiu, Xiaomin Zhao, Feixiang Liu, Songlin Chen, Jianfeng Xu, Guohua Chen

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The capabilities of conductive ink with both excellent conductivity and flexibility properties are extremely important for the construction of next-generation flexible electronic devices. However, the development of an appropriate ink possessing high conductivity and good dispersity remains a big challenge for ink-jet printing. Here, an original synthesis method of surfactant-free carbon black@graphene (CB@rGO) conductive ink is reported via freeze-drying process and reduction in p-phenylenediamine. The CB@rGO ink unambiguously displays a well-defined and smooth morphology, extremely the CB@rGO conductive particles showing good stability in many solvents. The CB@rGO film exhibited outstanding flexibility which is showed by the durable conductivity after bending 1000 times. Furthermore, it has an excellent conductivity of 714 ± 90 S m−1, and these data increased to 5091 ± 200 S m−1 after the high temperature post-processing increased by 198% compared to the traditional rGO film. Notably, the absence of surfactant in conductive fillers’ dispersing process contributed to the high conductivity of CB@rGO ink compared with the traditional ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Scidà A, Haque S, Treossi E, Robinson A, Smerzi S, Ravesi S, Borini S, Palermo S (2018) Application of graphene-based flexible antennas in consumer electronic devices. Mater Today 21:223–230CrossRef Scidà A, Haque S, Treossi E, Robinson A, Smerzi S, Ravesi S, Borini S, Palermo S (2018) Application of graphene-based flexible antennas in consumer electronic devices. Mater Today 21:223–230CrossRef
2.
Zurück zum Zitat Cheng C, Zhang JG, Li S, Xia Y, Nie CX, Shi ZQ, Cuellar-Camacho JL, Ma N, Haag R (2017) A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers. Adv Mater 30:1705452CrossRef Cheng C, Zhang JG, Li S, Xia Y, Nie CX, Shi ZQ, Cuellar-Camacho JL, Ma N, Haag R (2017) A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers. Adv Mater 30:1705452CrossRef
3.
Zurück zum Zitat Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336CrossRef Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336CrossRef
4.
Zurück zum Zitat Wu HJ, Wu GL, Ren YY, Yang L, Wang LD, Li XH (2015) Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater Chem C 3:7677–7690CrossRef Wu HJ, Wu GL, Ren YY, Yang L, Wang LD, Li XH (2015) Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater Chem C 3:7677–7690CrossRef
5.
Zurück zum Zitat Jia ZR, Lin KJ, Wu GL, Xing H, Wu HJ (2018) Recent progresses of high-temperature microwave-absorbing materials. NANO 13:1830005CrossRef Jia ZR, Lin KJ, Wu GL, Xing H, Wu HJ (2018) Recent progresses of high-temperature microwave-absorbing materials. NANO 13:1830005CrossRef
6.
Zurück zum Zitat Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D-crystal-based functional inks. Adv Mater 28:6136–6166CrossRef Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D-crystal-based functional inks. Adv Mater 28:6136–6166CrossRef
7.
Zurück zum Zitat Lee CL, Chen CH, Chen CW (2013) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302CrossRef Lee CL, Chen CH, Chen CW (2013) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296–302CrossRef
8.
Zurück zum Zitat Li LH, Guo YZ, Zhang XY, Song YL (2014) Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. J Mater Chem A 2:19095–19101CrossRef Li LH, Guo YZ, Zhang XY, Song YL (2014) Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. J Mater Chem A 2:19095–19101CrossRef
9.
Zurück zum Zitat Jia ZR, Lan D, Lin KJ, Qin M, Kou KC, Wu GL, Wu HJ (2018) Progress in low-frequency microwave absorbing materials. J Mater Sci-Mater El 29:17122–17136CrossRef Jia ZR, Lan D, Lin KJ, Qin M, Kou KC, Wu GL, Wu HJ (2018) Progress in low-frequency microwave absorbing materials. J Mater Sci-Mater El 29:17122–17136CrossRef
10.
Zurück zum Zitat Zhu J, Hersam MC (2017) Assembly and electronic applications of colloidal nanomaterials. Adv Mater 29:1603895CrossRef Zhu J, Hersam MC (2017) Assembly and electronic applications of colloidal nanomaterials. Adv Mater 29:1603895CrossRef
11.
Zurück zum Zitat Majee S, Liu C, Wu B, Zhang SL, Zhang ZB (2017) Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 114:77–83CrossRef Majee S, Liu C, Wu B, Zhang SL, Zhang ZB (2017) Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 114:77–83CrossRef
12.
13.
Zurück zum Zitat Chen J, Shepherd RL, Razal JM, Huang X, Zhang WM, Zhao J, Harris AT, Wang S, Minett AI, Zhang H (2007) Scalable solid-template reduction for designed reduced graphene oxide architectures. ACS Appl Mater Interfaces 5:7676–7681CrossRef Chen J, Shepherd RL, Razal JM, Huang X, Zhang WM, Zhao J, Harris AT, Wang S, Minett AI, Zhang H (2007) Scalable solid-template reduction for designed reduced graphene oxide architectures. ACS Appl Mater Interfaces 5:7676–7681CrossRef
14.
Zurück zum Zitat Park S, Lee KS, Bozoklu G, Cai WW, Nguye ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef Park S, Lee KS, Bozoklu G, Cai WW, Nguye ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef
15.
Zurück zum Zitat Han X, Chen Y, Zhu H, Preston C, Wan J, Fang Z, Hu L (2013) Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology 24:205304CrossRef Han X, Chen Y, Zhu H, Preston C, Wan J, Fang Z, Hu L (2013) Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology 24:205304CrossRef
16.
Zurück zum Zitat Zhang ZC, Sun JJ, Lai C, Wang Q, Hu CG (2017) High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 120:411–418CrossRef Zhang ZC, Sun JJ, Lai C, Wang Q, Hu CG (2017) High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 120:411–418CrossRef
17.
Zurück zum Zitat Li JT, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992CrossRef Li JT, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2013) Efficient inkjet printing of graphene. Adv Mater 25:3985–3992CrossRef
18.
Zurück zum Zitat Majee S, Song M, Zhang SL, Zhang ZB (2016) Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon 102:51–57CrossRef Majee S, Song M, Zhang SL, Zhang ZB (2016) Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon 102:51–57CrossRef
19.
Zurück zum Zitat Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhmanl I, Su Y, Mesite SV, Johnstone DN, Leary RK, Midgley PA, Pugno NM, Torrisil F, Ferrari AC (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11:2742–2755CrossRef Karagiannidis PG, Hodge SA, Lombardi L, Tomarchio F, Decorde N, Milana S, Goykhmanl I, Su Y, Mesite SV, Johnstone DN, Leary RK, Midgley PA, Pugno NM, Torrisil F, Ferrari AC (2017) Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11:2742–2755CrossRef
20.
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
21.
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
22.
Zurück zum Zitat Wang M, Duong LD, Oh JS, Mai NT, Kim S, Hong S, Hwang T, Lee Y, Nam JD (2014) Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6:1747–1753CrossRef Wang M, Duong LD, Oh JS, Mai NT, Kim S, Hong S, Hwang T, Lee Y, Nam JD (2014) Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6:1747–1753CrossRef
23.
Zurück zum Zitat Wei D, Li HW, Han DX, Zhang QX, Niu L, Yang HF, Bower C, Andrew P, Ryhanen T (2011) Properties of graphene inks stabilized by different functional groups. Nanotechnology 22:1–7 Wei D, Li HW, Han DX, Zhang QX, Niu L, Yang HF, Bower C, Andrew P, Ryhanen T (2011) Properties of graphene inks stabilized by different functional groups. Nanotechnology 22:1–7
24.
Zurück zum Zitat Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2012) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860CrossRef Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2012) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860CrossRef
25.
Zurück zum Zitat Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakann A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakann A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef
26.
Zurück zum Zitat Rogala M, Wlasny I, Dabrowski P, Kowalczyk PJ, Busiakiewicz A, Kozlowski W (2015) Graphene oxide overprints for flexible and transparent electronics. Appl Phys Lett 106:041901CrossRef Rogala M, Wlasny I, Dabrowski P, Kowalczyk PJ, Busiakiewicz A, Kozlowski W (2015) Graphene oxide overprints for flexible and transparent electronics. Appl Phys Lett 106:041901CrossRef
28.
Zurück zum Zitat Xu LY, Yang GY, Jing HY, Wei J, Han YD (2014) Ag-graphene hybrid conductive ink for writing electronics. Nanotechnology 25:055201CrossRef Xu LY, Yang GY, Jing HY, Wei J, Han YD (2014) Ag-graphene hybrid conductive ink for writing electronics. Nanotechnology 25:055201CrossRef
29.
Zurück zum Zitat Zhou M, Tian T, Li XF, Sun XD, Zhang J, Cui P, Tang J, Qin LC (2014) Production of graphene by liquid-phase exfoliation of intercalated graphite. Int J Electrochemical SC 9:810–820 Zhou M, Tian T, Li XF, Sun XD, Zhang J, Cui P, Tang J, Qin LC (2014) Production of graphene by liquid-phase exfoliation of intercalated graphite. Int J Electrochemical SC 9:810–820
30.
Zurück zum Zitat He DF, Shen LM, Zhang XY, Wang YF, Bao NZ (2014) An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J 60:2757–2764CrossRef He DF, Shen LM, Zhang XY, Wang YF, Bao NZ (2014) An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J 60:2757–2764CrossRef
31.
Zurück zum Zitat Szabo T, Berkesi O, Dekany I (2015) Drift study of deuterium-exchanged graphite oxide. Carbon 43:3186–3189CrossRef Szabo T, Berkesi O, Dekany I (2015) Drift study of deuterium-exchanged graphite oxide. Carbon 43:3186–3189CrossRef
32.
Zurück zum Zitat Chen Y, Zhang X, Yu P, Ma YW (2019) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 30:4527–4529 Chen Y, Zhang X, Yu P, Ma YW (2019) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 30:4527–4529
33.
Zurück zum Zitat Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Chang DW, Dai L, Baeka JB (2012) Edge-carboxylated graphene nanosheets via ball milling. P Natl Acad Sci USA 109:5588–5593CrossRef Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Chang DW, Dai L, Baeka JB (2012) Edge-carboxylated graphene nanosheets via ball milling. P Natl Acad Sci USA 109:5588–5593CrossRef
34.
Zurück zum Zitat Jiang J, Liu FX, Zhuang KY, Chen DQ, Chen GH (2017) Composites of epoxy/graphene-modified-diamond filler show enhanced thermal conductivity and high electrical insulation. Rsc Adv 7:40761–40766CrossRef Jiang J, Liu FX, Zhuang KY, Chen DQ, Chen GH (2017) Composites of epoxy/graphene-modified-diamond filler show enhanced thermal conductivity and high electrical insulation. Rsc Adv 7:40761–40766CrossRef
35.
Zurück zum Zitat He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054–5064CrossRef He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054–5064CrossRef
36.
Zurück zum Zitat Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep-UK 5:10160CrossRef Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep-UK 5:10160CrossRef
37.
Zurück zum Zitat Eigler S, Hu Y, Ishii Y, Andreas H (2013) Controlled functionalization of graphene oxide with sodium azide. Nanoscale 5:12136–12139CrossRef Eigler S, Hu Y, Ishii Y, Andreas H (2013) Controlled functionalization of graphene oxide with sodium azide. Nanoscale 5:12136–12139CrossRef
38.
Zurück zum Zitat Jia ZR, Gao ZG, Lan D, Cheng YH, Wu GR, Wu HJ (2018) Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin Phys B 27:117806CrossRef Jia ZR, Gao ZG, Lan D, Cheng YH, Wu GR, Wu HJ (2018) Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin Phys B 27:117806CrossRef
39.
Zurück zum Zitat Lan D, Qin M, Yang R, Chen S, Wu H, Fan Y, Zhang F (2019) Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J Colloid Interf Sci 533:481–491CrossRef Lan D, Qin M, Yang R, Chen S, Wu H, Fan Y, Zhang F (2019) Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J Colloid Interf Sci 533:481–491CrossRef
40.
Zurück zum Zitat Faghani A, Donskyi IS, Gholami MF, Ziem B, Lippitz A, Unger WES, Bçttcher C, Rabe JP, Haag R, Adeli M (2017) Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew Chem 56:2619–2723CrossRef Faghani A, Donskyi IS, Gholami MF, Ziem B, Lippitz A, Unger WES, Bçttcher C, Rabe JP, Haag R, Adeli M (2017) Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew Chem 56:2619–2723CrossRef
41.
Zurück zum Zitat Paton KR, Varrla E, Backes C, Smith RJ, UmarKhan O’Neill A, Boland C, Lotya M et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRef Paton KR, Varrla E, Backes C, Smith RJ, UmarKhan O’Neill A, Boland C, Lotya M et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRef
42.
Zurück zum Zitat Arapov K, Bex G, Hendriks R, Rubingh E, Abbel R, With GD, Friedrich H (2016) Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv Eng Mater 18:1234–1239CrossRef Arapov K, Bex G, Hendriks R, Rubingh E, Abbel R, With GD, Friedrich H (2016) Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv Eng Mater 18:1234–1239CrossRef
43.
Zurück zum Zitat Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29:1–8 Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29:1–8
44.
Zurück zum Zitat Kölpin N, Wegener M, Teuber E, Polster S, Frey L, Roosen A (2013) Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. J Mater Sci 48:1623–1631CrossRef Kölpin N, Wegener M, Teuber E, Polster S, Frey L, Roosen A (2013) Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. J Mater Sci 48:1623–1631CrossRef
45.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
46.
Zurück zum Zitat Wu HJ, Qu SH, Lin KJ, Qing YC, Wang LD, Fan YC, Fu QH, Zhang HL (2018) Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol 333:153–159CrossRef Wu HJ, Qu SH, Lin KJ, Qing YC, Wang LD, Fan YC, Fu QH, Zhang HL (2018) Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol 333:153–159CrossRef
47.
Zurück zum Zitat Wu HJ, Wu GL, Wang LD (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451CrossRef Wu HJ, Wu GL, Wang LD (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451CrossRef
48.
Zurück zum Zitat Su R, Sun W, Tian C, Chen GH (2015) An edge-decorated submicron reduced graphite oxide nanoflakes and its composites with carbon nanotubes for transparent conducting films. Rsc Adv 5:46785–46789CrossRef Su R, Sun W, Tian C, Chen GH (2015) An edge-decorated submicron reduced graphite oxide nanoflakes and its composites with carbon nanotubes for transparent conducting films. Rsc Adv 5:46785–46789CrossRef
Metadaten
Titel
Surfactant-free carbon black@graphene conductive ink for flexible electronics
verfasst von
Xinbin Qiu
Xiaomin Zhao
Feixiang Liu
Songlin Chen
Jianfeng Xu
Guohua Chen
Publikationsdatum
13.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03687-2

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.