Skip to main content
Erschienen in: Journal of Materials Science 16/2019

10.05.2019 | Electronic materials

Oxidation-induced stress in Si nanopillars

verfasst von: Shujun Ye, Kikuo Yamabe, Tetsuo Endoh

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we investigate the microstructure and oxidation of Si nanopillars and report that the oxidation at the sidewall of Si pillars is initially retarded (the so-called self-limiting) and eventually stops altogether at a certain size (stopping size), and further oxidation causes cracks at the bottom of the pillars, that depends on the initial Si nanopillar diameter and the experimental conditions. The diffusion of oxidant in the oxide and the compressive stress due to volume expansion from Si to SiO2 caused by the old oxide are insufficient to explain the above phenomenon. Herein, the chemical reaction (breaking of Si–Si bonds) that causes the remaining Si–Si bonds to shrink is introduced; this new model well explains the oxidation of Si nanopillars with the evidence of the change in crystal planes distances observed from transmission electron microscope. The present work contributes to the intrinsic understanding and precise controlling of oxidation in Si nanopillars for future device fabrication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Endoh T, Nakamura T, Masuoka F (1997) An accurate model of fully-depleted surrounding gate transistor (FD-SGT). IEICE Trans Electron 80(7):905–910 Endoh T, Nakamura T, Masuoka F (1997) An accurate model of fully-depleted surrounding gate transistor (FD-SGT). IEICE Trans Electron 80(7):905–910
2.
Zurück zum Zitat Yang B, Buddharaju KD, Teo SH, Singh N, Lo GQ, Kwong DL (2008) Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett 29(7):791–794CrossRef Yang B, Buddharaju KD, Teo SH, Singh N, Lo GQ, Kwong DL (2008) Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett 29(7):791–794CrossRef
3.
Zurück zum Zitat Imamoto T, Ma Y, Muraguchi M, Endoh T (2015) Low-frequency noise reduction in vertical MOSFETs having tunable threshold voltage fabricated with 60 nm CMOS technology on 300 mm wafer process. Jpn J Appl Phys 54:04DC11CrossRef Imamoto T, Ma Y, Muraguchi M, Endoh T (2015) Low-frequency noise reduction in vertical MOSFETs having tunable threshold voltage fabricated with 60 nm CMOS technology on 300 mm wafer process. Jpn J Appl Phys 54:04DC11CrossRef
6.
Zurück zum Zitat Ye S, Nozaki T, Kotani Y, Toyoki K, Nakamura T, Yonemura S, Shibata T, Pati SP, Al-Mahdawi M, Shiokawa Y, Sahashi M (2018) Inserted metals for low-energy magnetoelectric switching in a Cr2O3/ferromagnet interfacial exchange-biased thin film system. J Mater Chem C 6:2962–2969CrossRef Ye S, Nozaki T, Kotani Y, Toyoki K, Nakamura T, Yonemura S, Shibata T, Pati SP, Al-Mahdawi M, Shiokawa Y, Sahashi M (2018) Inserted metals for low-energy magnetoelectric switching in a Cr2O3/ferromagnet interfacial exchange-biased thin film system. J Mater Chem C 6:2962–2969CrossRef
7.
Zurück zum Zitat Železny J, Wadley P, Olejnik K, Hoffmann A, Ohno H (2018) Spin transport and spin torque in antiferromagnetic devices. Nat Phys 14:220–228CrossRef Železny J, Wadley P, Olejnik K, Hoffmann A, Ohno H (2018) Spin transport and spin torque in antiferromagnetic devices. Nat Phys 14:220–228CrossRef
8.
Zurück zum Zitat Ye S, Pati SP, Shiokawa Y, Al-Mahdawi M, Nozaki T, Sahashi M (2017) Observation of perpendicular exchange bias in Ir-doped Fe2O3/Co thin film system. Phys Chem Chem Phys 19:8188–8193CrossRef Ye S, Pati SP, Shiokawa Y, Al-Mahdawi M, Nozaki T, Sahashi M (2017) Observation of perpendicular exchange bias in Ir-doped Fe2O3/Co thin film system. Phys Chem Chem Phys 19:8188–8193CrossRef
9.
Zurück zum Zitat Endoh T, Koike H, Ikeda S, Hanyu T, Ohno H (2016) An overview of nonvolatile emerging memories—spintronics for working memories. IEEE J Emerg Sel Top Circuits Syst 6:109–119CrossRef Endoh T, Koike H, Ikeda S, Hanyu T, Ohno H (2016) An overview of nonvolatile emerging memories—spintronics for working memories. IEEE J Emerg Sel Top Circuits Syst 6:109–119CrossRef
10.
Zurück zum Zitat Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748CrossRef Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748CrossRef
11.
Zurück zum Zitat Morton K, Nieberg G, Bai S, Chou S (2008) Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (> 50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19:345301CrossRef Morton K, Nieberg G, Bai S, Chou S (2008) Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (> 50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19:345301CrossRef
12.
Zurück zum Zitat Kushibiki M, Hara A, Nishimura E, Endoh T (2011) Fabrication of silicon pillar with 25 nm half pitch using new multiple double patterning technique. Jpn J Appl Phys 50:04DA16CrossRef Kushibiki M, Hara A, Nishimura E, Endoh T (2011) Fabrication of silicon pillar with 25 nm half pitch using new multiple double patterning technique. Jpn J Appl Phys 50:04DA16CrossRef
13.
Zurück zum Zitat Han X, Larrieu G, Fazzini PF, Dubois E (2011) Realization of ultra dense arrays of vertical silicon nanowires with defect free surface and perfect anisotropy using a top-down approach. Microelectron Eng 88(8):2622–2624CrossRef Han X, Larrieu G, Fazzini PF, Dubois E (2011) Realization of ultra dense arrays of vertical silicon nanowires with defect free surface and perfect anisotropy using a top-down approach. Microelectron Eng 88(8):2622–2624CrossRef
14.
Zurück zum Zitat Wang T, Yu B, Liu Y, Guo Q, Sheng K, Deen M (2012) Fabrication of vertically stacked single-crystalline Si nanowires using self-limiting oxidation. Nanotechnology 23:015307CrossRef Wang T, Yu B, Liu Y, Guo Q, Sheng K, Deen M (2012) Fabrication of vertically stacked single-crystalline Si nanowires using self-limiting oxidation. Nanotechnology 23:015307CrossRef
15.
Zurück zum Zitat Su S, Lin L, Li Z, Feng J, Zhang Z (2013) The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays. Nanoscale Res Lett 8:405CrossRef Su S, Lin L, Li Z, Feng J, Zhang Z (2013) The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays. Nanoscale Res Lett 8:405CrossRef
16.
Zurück zum Zitat Han XL, Larrieu G, Krzeminski C (2013) Modelling and engineering of stress based controlled oxidation effects for silicon nanostructure patterning. Nanotechnology 24:495301CrossRef Han XL, Larrieu G, Krzeminski C (2013) Modelling and engineering of stress based controlled oxidation effects for silicon nanostructure patterning. Nanotechnology 24:495301CrossRef
17.
Zurück zum Zitat Li L, Fang Y, Xu C, Zhao Y, Zang N, Jiang P, Ziegler KJ (2016) Fabricating vertically- aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidization. Nanotechnology 27:165303CrossRef Li L, Fang Y, Xu C, Zhao Y, Zang N, Jiang P, Ziegler KJ (2016) Fabricating vertically- aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidization. Nanotechnology 27:165303CrossRef
18.
Zurück zum Zitat Ye S, Endoh T (2019) Edge effect in the oxidation of 3-dimensional (3D) nano-structured silicon. Mater Sci Semicond Process 93:266–273CrossRef Ye S, Endoh T (2019) Edge effect in the oxidation of 3-dimensional (3D) nano-structured silicon. Mater Sci Semicond Process 93:266–273CrossRef
19.
Zurück zum Zitat Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778CrossRef Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778CrossRef
20.
Zurück zum Zitat Pasquarello A, Hybertsen MS, Car R (1998) Interface structure between silicon and its oxide by first-principles molecular dynamics. Nature 396:58–60CrossRef Pasquarello A, Hybertsen MS, Car R (1998) Interface structure between silicon and its oxide by first-principles molecular dynamics. Nature 396:58–60CrossRef
21.
Zurück zum Zitat Kageshima H, Shiraishi K (1998) First-principles study of oxide growth on Si(100) surfaces and at SiO2/Si(100) interfaces. Phys Rev Lett 81(26):5936–5939CrossRef Kageshima H, Shiraishi K (1998) First-principles study of oxide growth on Si(100) surfaces and at SiO2/Si(100) interfaces. Phys Rev Lett 81(26):5936–5939CrossRef
22.
Zurück zum Zitat Watanabe H, Kato K, Uda T, Fujita K, Ichikawa M (1998) Kinetics of initial layer-by-layer oxidation of Si(001) surfaces. Phys Rev Lett 80(2):345–348CrossRef Watanabe H, Kato K, Uda T, Fujita K, Ichikawa M (1998) Kinetics of initial layer-by-layer oxidation of Si(001) surfaces. Phys Rev Lett 80(2):345–348CrossRef
23.
Zurück zum Zitat Shiraishi K, Kageshima H, Uematsu M (2000) Phenomenological theory on Si layer- by-layer oxidation with small interfacial islands. Jpn J Appl Phys 39:L1263–L1266CrossRef Shiraishi K, Kageshima H, Uematsu M (2000) Phenomenological theory on Si layer- by-layer oxidation with small interfacial islands. Jpn J Appl Phys 39:L1263–L1266CrossRef
24.
Zurück zum Zitat Watanabe T, Tatsumura K, Ohdomari I (2004) SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation. Appl Surf Sci 237:125–133CrossRef Watanabe T, Tatsumura K, Ohdomari I (2004) SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation. Appl Surf Sci 237:125–133CrossRef
25.
Zurück zum Zitat Watanabe T, Ohdomari I (2007) A kinetic equation for thermal oxidation of silicon replacing the Deal–Grove equation. J Electrochem Soc 154(12):G270–G276CrossRef Watanabe T, Ohdomari I (2007) A kinetic equation for thermal oxidation of silicon replacing the Deal–Grove equation. J Electrochem Soc 154(12):G270–G276CrossRef
26.
Zurück zum Zitat Ohishi K, Hattori T (1994) Periodic changes in SiO2/Si(111) interface structures with progress of thermal oxidation. Jpn J Appl Phys 33:L675–L678CrossRef Ohishi K, Hattori T (1994) Periodic changes in SiO2/Si(111) interface structures with progress of thermal oxidation. Jpn J Appl Phys 33:L675–L678CrossRef
27.
Zurück zum Zitat Watanabe T, Tatsumura K, Ohdomari I (2006) New linear-parabolic rate equation for thermal oxidation of silicon. Phys Rev Lett 96:196102CrossRef Watanabe T, Tatsumura K, Ohdomari I (2006) New linear-parabolic rate equation for thermal oxidation of silicon. Phys Rev Lett 96:196102CrossRef
28.
Zurück zum Zitat Miyazaki S, Nishimura H, Fukuda M, Ley L, Ristein J (1997) Structure and electronic states of ultrathin SiO2 thermally grown on Si(100) and Si(111) surfaces. Appl Surf Sci 113:585–589CrossRef Miyazaki S, Nishimura H, Fukuda M, Ley L, Ristein J (1997) Structure and electronic states of ultrathin SiO2 thermally grown on Si(100) and Si(111) surfaces. Appl Surf Sci 113:585–589CrossRef
29.
Zurück zum Zitat Hirose K, Nohira H, Koike T, Sakano K, Hattori T (1999) Structural transition layer at SiO2/Si interfaces. Phys Rev B 59(8):5617–5621CrossRef Hirose K, Nohira H, Koike T, Sakano K, Hattori T (1999) Structural transition layer at SiO2/Si interfaces. Phys Rev B 59(8):5617–5621CrossRef
30.
Zurück zum Zitat Awaji N, Ohkubo S, Nakanishi T, Sugita Y, Takasaki K, Komiya S (1996) High-density layer at the SiO2/Si interface observed by difference X-ray reflectivity. Jpn J Appl Phys 35:L67–L70CrossRef Awaji N, Ohkubo S, Nakanishi T, Sugita Y, Takasaki K, Komiya S (1996) High-density layer at the SiO2/Si interface observed by difference X-ray reflectivity. Jpn J Appl Phys 35:L67–L70CrossRef
31.
Zurück zum Zitat Matsumura A, Hamaguchi I, Kawamura K, Sasaki T, Takayama S, Nagatake Y (2003) Technological innovation in low-dose SIMOX wafers fabricated by an internal thermal oxidation (ITOX) process. Microelectron Eng 66:400–414CrossRef Matsumura A, Hamaguchi I, Kawamura K, Sasaki T, Takayama S, Nagatake Y (2003) Technological innovation in low-dose SIMOX wafers fabricated by an internal thermal oxidation (ITOX) process. Microelectron Eng 66:400–414CrossRef
32.
Zurück zum Zitat Irene EA, Massoud HZ, Tierney E (1986) Silicon oxidation studies: silicon orientation effects on thermal oxidation. J Electrochem Soc 133(6):1253–1256CrossRef Irene EA, Massoud HZ, Tierney E (1986) Silicon oxidation studies: silicon orientation effects on thermal oxidation. J Electrochem Soc 133(6):1253–1256CrossRef
33.
Zurück zum Zitat Massoud HZ, Plummer JD, Irene EA (1985) Thermal oxidation of silicon in dry oxygen (accurate determination of the kinetic rate constants). J Electrochem Soc 132(7):1745–1753CrossRef Massoud HZ, Plummer JD, Irene EA (1985) Thermal oxidation of silicon in dry oxygen (accurate determination of the kinetic rate constants). J Electrochem Soc 132(7):1745–1753CrossRef
34.
Zurück zum Zitat EerNisse EP (1977) Viscous flow of thermal SiO2. Appl Phys Lett 30:290–293CrossRef EerNisse EP (1977) Viscous flow of thermal SiO2. Appl Phys Lett 30:290–293CrossRef
35.
Zurück zum Zitat Razouk R, Deal BE (1979) Dependence of interface state density on silicon thermal oxidation process variables. J Electrochem Soc 126(9):1573–1581CrossRef Razouk R, Deal BE (1979) Dependence of interface state density on silicon thermal oxidation process variables. J Electrochem Soc 126(9):1573–1581CrossRef
36.
Zurück zum Zitat Marcus RB, Sheng T (1982) The oxidation of shaped silicon surfaces. J Electrochem Soc 129:1278–1282CrossRef Marcus RB, Sheng T (1982) The oxidation of shaped silicon surfaces. J Electrochem Soc 129:1278–1282CrossRef
37.
Zurück zum Zitat Kao DB, McVittie JP, Nix WD, SarasWat KC (1988) Two-dimensional thermal oxidation of silicon-I. Experiments. IEEE Trans Electron Devices ED-35:1008–1017 Kao DB, McVittie JP, Nix WD, SarasWat KC (1988) Two-dimensional thermal oxidation of silicon-I. Experiments. IEEE Trans Electron Devices ED-35:1008–1017
38.
Zurück zum Zitat Kao DB, McVittie JP, Nix WD, SarasWat KC (1988) Two-dimensional thermal oxidation of silicon-II. Modeling stress effects in wet oxides. IEEE Trans Electron Devices 35:25–37CrossRef Kao DB, McVittie JP, Nix WD, SarasWat KC (1988) Two-dimensional thermal oxidation of silicon-II. Modeling stress effects in wet oxides. IEEE Trans Electron Devices 35:25–37CrossRef
39.
Zurück zum Zitat Shir D, Liu B, Mohammad A, Lew K, Mohney S (2006) Oxidation of silicon nanowires. J Vac Sci Technol B 24(3):1333–1336CrossRef Shir D, Liu B, Mohammad A, Lew K, Mohney S (2006) Oxidation of silicon nanowires. J Vac Sci Technol B 24(3):1333–1336CrossRef
40.
Zurück zum Zitat Liu HI, Biegelsen DK, Ponce FA, Johnson NM, Pease RFW (1994) Self-limiting fabricating sub-5 nm silicon nanowires. Appl Phys Lett 64:1383–1385CrossRef Liu HI, Biegelsen DK, Ponce FA, Johnson NM, Pease RFW (1994) Self-limiting fabricating sub-5 nm silicon nanowires. Appl Phys Lett 64:1383–1385CrossRef
41.
Zurück zum Zitat Bongiorno A, Pasquarello A (2004) Reaction of the oxygen molecule at the Si(100)–SiO2 interface during silicon oxidation. Phys Rev Lett 93(8):086102CrossRef Bongiorno A, Pasquarello A (2004) Reaction of the oxygen molecule at the Si(100)–SiO2 interface during silicon oxidation. Phys Rev Lett 93(8):086102CrossRef
42.
Zurück zum Zitat Buttner C, Zacharias M (2006) Retarded oxidation of Si nanowires. Appl Phys Lett 89:263106CrossRef Buttner C, Zacharias M (2006) Retarded oxidation of Si nanowires. Appl Phys Lett 89:263106CrossRef
43.
Zurück zum Zitat Cui H, Wang CX, Yang GW (2008) Origin of self-limiting oxidation of Si nanowires. Nano Lett 8(9):2731–2737CrossRef Cui H, Wang CX, Yang GW (2008) Origin of self-limiting oxidation of Si nanowires. Nano Lett 8(9):2731–2737CrossRef
44.
Zurück zum Zitat Ma F, Rustagi S, Samudra G, Zhao H, Singh N, Lo G, Kwong D (2010) Modeling of stress-retarded thermal oxidation of nonplanar silicon structures for realization of nanoscale devices. IEEE Electron Device Lett 31(7):719–721CrossRef Ma F, Rustagi S, Samudra G, Zhao H, Singh N, Lo G, Kwong D (2010) Modeling of stress-retarded thermal oxidation of nonplanar silicon structures for realization of nanoscale devices. IEEE Electron Device Lett 31(7):719–721CrossRef
45.
Zurück zum Zitat Fazzini PF, Bonafos C, Claverie A, Hubert A, Ernst T, Respaud M (2011) Modeling stress retarded self-limiting oxidation of suspended silicon nanowires for the development of silicon nanowire-based nanodevices. J Appl Phys 110:033524CrossRef Fazzini PF, Bonafos C, Claverie A, Hubert A, Ernst T, Respaud M (2011) Modeling stress retarded self-limiting oxidation of suspended silicon nanowires for the development of silicon nanowire-based nanodevices. J Appl Phys 110:033524CrossRef
46.
Zurück zum Zitat Khalilov U, Pourtois G, van Duin ACT, Neyts EC (2012) Self-limiting oxidation in small-diameter Si nanowires. Chem Mater 24(11):2141–2147CrossRef Khalilov U, Pourtois G, van Duin ACT, Neyts EC (2012) Self-limiting oxidation in small-diameter Si nanowires. Chem Mater 24(11):2141–2147CrossRef
47.
Zurück zum Zitat Krzeminski C, Han X, Larrieu G (2012) Understanding of the retarded oxidation effects in silicon nanostructures. Appl Phys Lett 100:263111CrossRef Krzeminski C, Han X, Larrieu G (2012) Understanding of the retarded oxidation effects in silicon nanostructures. Appl Phys Lett 100:263111CrossRef
48.
Zurück zum Zitat Fan J, Huang R, Wang R, Xu Q, Ai Y, Xu X, Li M, Wang Y (2013) Two-dimensional self-limiting wet oxidation of silicon nanowires: experiments and modeling. IEEE Trans Electron Devices 60(9):2747–2753CrossRef Fan J, Huang R, Wang R, Xu Q, Ai Y, Xu X, Li M, Wang Y (2013) Two-dimensional self-limiting wet oxidation of silicon nanowires: experiments and modeling. IEEE Trans Electron Devices 60(9):2747–2753CrossRef
49.
Zurück zum Zitat Liu M, Jin P, Xu Z, Hanaor D, Gan Y, Chen C (2016) Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires. Theor Appl Mech Lett 6(5):195–199CrossRef Liu M, Jin P, Xu Z, Hanaor D, Gan Y, Chen C (2016) Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires. Theor Appl Mech Lett 6(5):195–199CrossRef
50.
Zurück zum Zitat Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress Mater Sci 56:654–724CrossRef Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress Mater Sci 56:654–724CrossRef
51.
Zurück zum Zitat Nadahara S, Shiozawa J, Imai K, Suguro K, Yamabe K (1989) Protuberance growth at polysilicon surfaces during oxidation. Appl Surf Sci 41(42):425–428 Nadahara S, Shiozawa J, Imai K, Suguro K, Yamabe K (1989) Protuberance growth at polysilicon surfaces during oxidation. Appl Surf Sci 41(42):425–428
52.
Zurück zum Zitat Kurstjens R, Vos I, Dross F, Poortmans J, Mertens R (2012) Thermal oxidation of a densely packed array of vertical si nanowires. J Electrochem Soc 159(3):H300–H306CrossRef Kurstjens R, Vos I, Dross F, Poortmans J, Mertens R (2012) Thermal oxidation of a densely packed array of vertical si nanowires. J Electrochem Soc 159(3):H300–H306CrossRef
54.
Zurück zum Zitat Tang D, Ren C, Wang M, Wei X, Kawamoto N, Liu C, Bando Y, Mitome M, Fukata N, Golberg D (2012) Mechanical properties of si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett 12:1894–1904 Tang D, Ren C, Wang M, Wei X, Kawamoto N, Liu C, Bando Y, Mitome M, Fukata N, Golberg D (2012) Mechanical properties of si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett 12:1894–1904
55.
Zurück zum Zitat Gordon M, Baron T, Dhalluin F, Gentile P, Ferret P (2009) Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett 9(2):525–529CrossRef Gordon M, Baron T, Dhalluin F, Gentile P, Ferret P (2009) Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett 9(2):525–529CrossRef
56.
Zurück zum Zitat Kang K, Cai W (2010) Size and temperature effects on the fracture mechanisms of silicon nanowires: molecular dynamics simulations. Int J Plast 26:1387–1401CrossRef Kang K, Cai W (2010) Size and temperature effects on the fracture mechanisms of silicon nanowires: molecular dynamics simulations. Int J Plast 26:1387–1401CrossRef
57.
Zurück zum Zitat Han X, Zheng K, Zhang Y, Zhang X, Zhang Z, Wang Z (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19:2112–2118CrossRef Han X, Zheng K, Zhang Y, Zhang X, Zhang Z, Wang Z (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19:2112–2118CrossRef
58.
Zurück zum Zitat Yasuda T, Kumagai N, Nishizawa M, Yamasaki S, Oheda H, Yamabe K (2003) Layer-resolved kinetics of Si oxidation investigated using the reflectance difference oscillation method. Phys Rev B 67:195338CrossRef Yasuda T, Kumagai N, Nishizawa M, Yamasaki S, Oheda H, Yamabe K (2003) Layer-resolved kinetics of Si oxidation investigated using the reflectance difference oscillation method. Phys Rev B 67:195338CrossRef
59.
Zurück zum Zitat Ohta H, Watanabe T, Ohdomari I (2007) Strain distribution around SiO2/Si interface in si nanowires: a molecular dynamics study. Jpn J Appl Phys 46(5B):3277–3282CrossRef Ohta H, Watanabe T, Ohdomari I (2007) Strain distribution around SiO2/Si interface in si nanowires: a molecular dynamics study. Jpn J Appl Phys 46(5B):3277–3282CrossRef
Metadaten
Titel
Oxidation-induced stress in Si nanopillars
verfasst von
Shujun Ye
Kikuo Yamabe
Tetsuo Endoh
Publikationsdatum
10.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03670-x

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.