Skip to main content
Erschienen in: Journal of Materials Science 16/2019

22.05.2019 | Polymers

Carbon microtubes derived from self-rolled chitosan acetate films and graphitized by joule heating

verfasst von: Adrian Beda, Haijime Yamada, Aleksandr Egunov, Camélia Matei Ghimbeu, Jean-Pierre Malval, Yukie Saito, Valeriy Luchnikov

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, a fast and efficient approach is proposed to obtain carbon microtubes with graphitic structure. The precursor tubes are formed via self-rolling of chitosan acetate (CA) biopolymer films in water. The self-rolling capacity is imparted to the CA films by heating them at 150 °C on a hot plate for several minutes in the ambient atmosphere. The resulting differential swelling of the top and bottom layers of the films in water generates the bending moment. The amorphous carbon microtubes are produced in Ar atmosphere via thermal treatment of chitosan acetate microtubes at 900 °C. Carbon/oxygen ratio increases from 1.2 for the pristine chitosan tube to 5.3 after the pyrolysis process. Finite electrical conductivity of the so-prepared tubes (σ ≈ 1 · 103 S · m−1) allows their consecutive treatment by joule heating. The current-induced graphitization of the tubes at 2500 °C is confirmed by TEM, Raman spectroscopy and XRD techniques. Electrical conductivity of tubes raised in course of the treatment to (σ ≈ 1.8 · 104 S · m−1). In joule-heated tubes, the carbon/oxygen ratio increases to 9.4.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Göring G, Dietrich P-I, Blaicher M, Sharma S, Korvink JG, Schimmel T, Koos C, Hölscher H (2016) Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Appl Phys Lett 109:063101CrossRef Göring G, Dietrich P-I, Blaicher M, Sharma S, Korvink JG, Schimmel T, Koos C, Hölscher H (2016) Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Appl Phys Lett 109:063101CrossRef
2.
Zurück zum Zitat Zakhurdaeva A, Dietrich P-I, Hölscher H, Koos C, Korvink JG, Sharma S (2017) Custom-designed glassy tips for atomic force microscopy. Micromachines 8(9):E285CrossRef Zakhurdaeva A, Dietrich P-I, Hölscher H, Koos C, Korvink JG, Sharma S (2017) Custom-designed glassy tips for atomic force microscopy. Micromachines 8(9):E285CrossRef
3.
Zurück zum Zitat Sharma S, Rostas AM, Bordonali L, MacKinnon N, Weber S, Korvink JG (2016) Micro and nano patternable magnetic carbon. J Appl Phys 120:235107CrossRef Sharma S, Rostas AM, Bordonali L, MacKinnon N, Weber S, Korvink JG (2016) Micro and nano patternable magnetic carbon. J Appl Phys 120:235107CrossRef
4.
Zurück zum Zitat Paczesny J, Wybrańska K, Niedziółka-Jönsson J, Roźniecka E, Wadowska M, Zawal P, Malka I, Dzięcielewski I, Prochowicz D, Hołyst R, Fiałkowski M (2015) RSC Adv 5:64083–64090CrossRef Paczesny J, Wybrańska K, Niedziółka-Jönsson J, Roźniecka E, Wadowska M, Zawal P, Malka I, Dzięcielewski I, Prochowicz D, Hołyst R, Fiałkowski M (2015) RSC Adv 5:64083–64090CrossRef
5.
Zurück zum Zitat Li Y, Hu Y-S, Titirici M-M, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRef Li Y, Hu Y-S, Titirici M-M, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRef
6.
Zurück zum Zitat Wanassi B, Ben Hariz I, Matei Ghimbeu C, Vaulot C, Jeguirim M (2017) Green carbon composite-derived polymer resin and waste cotton fibers for the removal of Alizarin Red S dye. Energies 10:1321CrossRef Wanassi B, Ben Hariz I, Matei Ghimbeu C, Vaulot C, Jeguirim M (2017) Green carbon composite-derived polymer resin and waste cotton fibers for the removal of Alizarin Red S dye. Energies 10:1321CrossRef
7.
Zurück zum Zitat Xie L, Sun G, Su F, Guo X, Kong Q, Li X, Huang X, Wan L, Song W, Li K, Lv C, Chen C-M (2016) Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A 4:1637–1646CrossRef Xie L, Sun G, Su F, Guo X, Kong Q, Li X, Huang X, Wan L, Song W, Li K, Lv C, Chen C-M (2016) Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A 4:1637–1646CrossRef
8.
Zurück zum Zitat Kumar K, Nandan B, Formanek P, Stamm M (2011) Fabrication of carbon microtubes from thin films of supramolecular assemblies via self-rolling approach. J Mater Chem 21:10813–10817CrossRef Kumar K, Nandan B, Formanek P, Stamm M (2011) Fabrication of carbon microtubes from thin films of supramolecular assemblies via self-rolling approach. J Mater Chem 21:10813–10817CrossRef
9.
Zurück zum Zitat Luchnikov VA, Sydorenko O, Stamm M (2005) Self-rolled polymer and composite polymer/metal micro- and nanotubes with patterned inner walls. Adv Mater 17:1177–1182CrossRef Luchnikov VA, Sydorenko O, Stamm M (2005) Self-rolled polymer and composite polymer/metal micro- and nanotubes with patterned inner walls. Adv Mater 17:1177–1182CrossRef
10.
Zurück zum Zitat Chia Gómez LP, Bollgruen P, Egunov AI, Mager D, Malloggi F, Korvink JG, Luchnikov VA (2013) Vapour processed self-rolled poly (dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface. Lab Chip 13:3827–3831CrossRef Chia Gómez LP, Bollgruen P, Egunov AI, Mager D, Malloggi F, Korvink JG, Luchnikov VA (2013) Vapour processed self-rolled poly (dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface. Lab Chip 13:3827–3831CrossRef
11.
Zurück zum Zitat Brossard R, Luchnikov V, Guenoun P, Malloggi F (2017) Patterning of spontaneous rolling thin polymer films for versatile Microcapillaries. J Polym Sci B 55:721CrossRef Brossard R, Luchnikov V, Guenoun P, Malloggi F (2017) Patterning of spontaneous rolling thin polymer films for versatile Microcapillaries. J Polym Sci B 55:721CrossRef
12.
Zurück zum Zitat Ghimbeu M, Luchnikov V (2018) Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer. Microporous Mesoporous Mater 263:42–52CrossRef Ghimbeu M, Luchnikov V (2018) Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer. Microporous Mesoporous Mater 263:42–52CrossRef
13.
Zurück zum Zitat Saito Y, Luchnikov V, Inaba A, Tamura K (2014) Self-scrolling ability of differentially acetylated chitosan film. Carbohydr Polym 30:44–48CrossRef Saito Y, Luchnikov V, Inaba A, Tamura K (2014) Self-scrolling ability of differentially acetylated chitosan film. Carbohydr Polym 30:44–48CrossRef
14.
Zurück zum Zitat Egunov A, Inaba A, Gree S, Malval J, Tamura K, Saito Y (2016) V Luchnikov time-programmed release of fluoroscein isocyanate dextran from micro-pattern-designed polymer scrolls. J Control Release 233:39–47CrossRef Egunov A, Inaba A, Gree S, Malval J, Tamura K, Saito Y (2016) V Luchnikov time-programmed release of fluoroscein isocyanate dextran from micro-pattern-designed polymer scrolls. J Control Release 233:39–47CrossRef
15.
16.
Zurück zum Zitat Erwin DL (2002) Industrial chemical process design. McGraw-Hill, New York, p 579. ISBN 0-07-137620-8 Erwin DL (2002) Industrial chemical process design. McGraw-Hill, New York, p 579. ISBN 0-07-137620-8
17.
Zurück zum Zitat Maldonado-Hódar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon Aerogels by transition metals. Langmuir 16:4367–4373CrossRef Maldonado-Hódar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon Aerogels by transition metals. Langmuir 16:4367–4373CrossRef
18.
Zurück zum Zitat Kim T, Jo C, Lim W-G, Lee J, Lee J, Lee K-H (2016) Facile conversion of activated carbon to battery anode material using microwave graphitization. Carbon 104:106–111CrossRef Kim T, Jo C, Lim W-G, Lee J, Lee J, Lee K-H (2016) Facile conversion of activated carbon to battery anode material using microwave graphitization. Carbon 104:106–111CrossRef
19.
Zurück zum Zitat Sopronyi M, Sima F, Vaulot C, Delmotte L, Bahouka A, Matei Ghimbeu C (2016) Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. Sci Rep 6:39617CrossRef Sopronyi M, Sima F, Vaulot C, Delmotte L, Bahouka A, Matei Ghimbeu C (2016) Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. Sci Rep 6:39617CrossRef
20.
Zurück zum Zitat Moussa G, Matei Ghimbeu C, Taberna P-L, Simon P, Vix-Guterl C (2016) Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon 105:628–637CrossRef Moussa G, Matei Ghimbeu C, Taberna P-L, Simon P, Vix-Guterl C (2016) Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. Carbon 105:628–637CrossRef
21.
Zurück zum Zitat Li Y, Chen XG, Liu N, Liu CS, Liu CG, Meng XH, Yu LJ, Kenendy JF (2007) Physicochemical characterization and antibacterial property of chitosan acetates. Carbohydr Polym 67:227–232CrossRef Li Y, Chen XG, Liu N, Liu CS, Liu CG, Meng XH, Yu LJ, Kenendy JF (2007) Physicochemical characterization and antibacterial property of chitosan acetates. Carbohydr Polym 67:227–232CrossRef
22.
Zurück zum Zitat Toffey A, Samaranayake G, Frazier CE, Glasser WG (1996) Chitin derivatives. I. Kinetics of the heat-induced conversion of chitosan to chitin. J Appl Polym Sci 60:75–85CrossRef Toffey A, Samaranayake G, Frazier CE, Glasser WG (1996) Chitin derivatives. I. Kinetics of the heat-induced conversion of chitosan to chitin. J Appl Polym Sci 60:75–85CrossRef
23.
Zurück zum Zitat Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580CrossRef Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580CrossRef
24.
Zurück zum Zitat Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef
25.
Zurück zum Zitat Dasgupta D, Demichelis F, Tagliaferro A (1991) Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon. Philos Mag B63:1255–1266CrossRef Dasgupta D, Demichelis F, Tagliaferro A (1991) Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon. Philos Mag B63:1255–1266CrossRef
26.
Zurück zum Zitat Pierson HO (1993) Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. Norwich, William Andrew, p 61 Pierson HO (1993) Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. Norwich, William Andrew, p 61
27.
Zurück zum Zitat Zhao X, Xu H, Wang Z, Xu Z, Zhang C, Wang G, Liu W, Ma J, Liu Y (2017) Sp2 clustering-induced improvement of resistive switching uniformity in Cu/amorphous carbon/Pt electrochemical metallization memory. J Mater Chem C 5:5420–5425CrossRef Zhao X, Xu H, Wang Z, Xu Z, Zhang C, Wang G, Liu W, Ma J, Liu Y (2017) Sp2 clustering-induced improvement of resistive switching uniformity in Cu/amorphous carbon/Pt electrochemical metallization memory. J Mater Chem C 5:5420–5425CrossRef
28.
Zurück zum Zitat Sebastian A, Pauza A, Rossel C, Shelby RM, Rodríguez AF, Pozidis H, Eleftheriou E (2011) Resistance switching at the nanometre scale in amorphous carbon. New J Phys 13:013020CrossRef Sebastian A, Pauza A, Rossel C, Shelby RM, Rodríguez AF, Pozidis H, Eleftheriou E (2011) Resistance switching at the nanometre scale in amorphous carbon. New J Phys 13:013020CrossRef
29.
Zurück zum Zitat Okada M, Ota N, Yoshimoto O, Tatsumi M, Inagaki M (2017) Review on the high-temperature resistance of graphite in inert atmospheres. Carbon 116:737–743CrossRef Okada M, Ota N, Yoshimoto O, Tatsumi M, Inagaki M (2017) Review on the high-temperature resistance of graphite in inert atmospheres. Carbon 116:737–743CrossRef
30.
Zurück zum Zitat Iwashita N, Imagawa H, Nishiumi W (2013) Variation of temperature dependence of electrical resistivity with crystal structure of artificial products. Carbon 61:602–608CrossRef Iwashita N, Imagawa H, Nishiumi W (2013) Variation of temperature dependence of electrical resistivity with crystal structure of artificial products. Carbon 61:602–608CrossRef
31.
Zurück zum Zitat Ogawa K (1991) Effect of heating an aqueous suspension of chitosan on the crystallinity and polymorphs. Agric Biol Chem 55(9):2375–2379 Ogawa K (1991) Effect of heating an aqueous suspension of chitosan on the crystallinity and polymorphs. Agric Biol Chem 55(9):2375–2379
32.
Zurück zum Zitat Yui T, Imada K, Okuyama K, Obata Y, Suzuki K, Ogawa K (1994) Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27:7601–7605CrossRef Yui T, Imada K, Okuyama K, Obata Y, Suzuki K, Ogawa K (1994) Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27:7601–7605CrossRef
33.
Zurück zum Zitat Naito P-K, Ogawa Y, Sawada D, Nishiyama Y, Iwata T, Wada M (2016) X-ray crystal structure of Anhydrous chitosan at atomic resolution. Biopolymers 105:361–368CrossRef Naito P-K, Ogawa Y, Sawada D, Nishiyama Y, Iwata T, Wada M (2016) X-ray crystal structure of Anhydrous chitosan at atomic resolution. Biopolymers 105:361–368CrossRef
34.
Zurück zum Zitat Balau L, Lisa G, Popa MI, Tura V, Melnig V (2004) Physico–chemical properties of chitosan films. CEJC 2(4):638–647 Balau L, Lisa G, Popa MI, Tura V, Melnig V (2004) Physico–chemical properties of chitosan films. CEJC 2(4):638–647
35.
Zurück zum Zitat Bachman TA, Alexeev AM, Koelmans WW, Zipoli F, Ott AK, Dou C, Ferrari AC, Nagareddy VK, Craciun MF, Jonnalagadda VP, Curioni A, Sebastian A (2017) Temperature evolution in nanoscale carbon-based memory devices due to local joule heating. IEEE Trans Nanotechnol 16(5):806–811CrossRef Bachman TA, Alexeev AM, Koelmans WW, Zipoli F, Ott AK, Dou C, Ferrari AC, Nagareddy VK, Craciun MF, Jonnalagadda VP, Curioni A, Sebastian A (2017) Temperature evolution in nanoscale carbon-based memory devices due to local joule heating. IEEE Trans Nanotechnol 16(5):806–811CrossRef
36.
Zurück zum Zitat Koelmans WW, Bachmann T, Zipoli F, Ott AK, Dou C, Ferrari AC, Cojocaru- Mirédin O, Zhang S, Scheu C, Wuttig C, Nagareddy VK, Craciun MF, Alexeev AM, Wright CD, Jonnalagadda VP, Curioni A, Sebastian A, Eleftheriou E (2016) Carbon-based resistive memories. In: 2016 IEEE 8th international memory workshop (IMW) https://doi.org/10.1109/imw.2016.7493569 Koelmans WW, Bachmann T, Zipoli F, Ott AK, Dou C, Ferrari AC, Cojocaru- Mirédin O, Zhang S, Scheu C, Wuttig C, Nagareddy VK, Craciun MF, Alexeev AM, Wright CD, Jonnalagadda VP, Curioni A, Sebastian A, Eleftheriou E (2016) Carbon-based resistive memories. In: 2016 IEEE 8th international memory workshop (IMW) https://​doi.​org/​10.​1109/​imw.​2016.​7493569
37.
Zurück zum Zitat Montenegro D N, Martínez Tomas M C, Muñoz Sanjosé V, Sallet V (2016) Gas-phase supersaturation effects on morphology properties of ZnO nano and microstructures grown by PVT. In: Journal of physics conference series, vol 687, p 012027 (4p) Montenegro D N, Martínez Tomas M C, Muñoz Sanjosé V, Sallet V (2016) Gas-phase supersaturation effects on morphology properties of ZnO nano and microstructures grown by PVT. In: Journal of physics conference series, vol 687, p 012027 (4p)
Metadaten
Titel
Carbon microtubes derived from self-rolled chitosan acetate films and graphitized by joule heating
verfasst von
Adrian Beda
Haijime Yamada
Aleksandr Egunov
Camélia Matei Ghimbeu
Jean-Pierre Malval
Yukie Saito
Valeriy Luchnikov
Publikationsdatum
22.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03675-6

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.