Skip to main content
Erschienen in: Journal of Materials Science 16/2019

15.05.2019 | Metals & corrosion

Phase-field modeling of microstructure evolution of Cu-rich phase in Fe–Cu–Mn–Ni–Al quinary system coupled with thermodynamic databases

verfasst von: Sun Yuanyang, Zhao Yuhong, Zhao Baojun, Yang Wenkui, Li Xiaoling, Hou Hua

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quinary phase-field model was extended and constructed, and the diffusion-controlled phase decomposition and morphology in thermal aging Fe–Cu–Mn–Ni–Al quinary system coupled with CALPHAD thermodynamic databases were successfully studied. The effects of Manganese composition on the morphology, volume fraction, number density, particles size and growth and coarsening of Cu-rich precipitates were investigated systematically. The simulation results showed that Cu-rich α phase was firstly formed, and the Ni, Al and Mn atoms were partitioned to the Cu-rich phase, leading to the formation of a Ni–Al–Mn-rich intermetallic ring/Cu-rich core precipitate morphology and final conversion of Cu-rich phase to Cu-rich γ phase. The curves of volume fraction and free energy variation with simulation time indicated that Mn element can promote nucleation driving force to overcome the nucleation barrier in initial stage and can also accelerate the precipitation of Cu-rich phase and promote the growth and coarsening processes. Through the analysis of number density (ND) and average particle size (APS), we found that the values of ND and APS of Cu-rich particles increase with the rising of Mn content, which indicates that the higher Mn content will boost the nucleation and growth rate. Moreover, the time exponent at the later precipitation was 0.41, 0.42 and 0.37, respectively, which had deviations with the 0.33 of the LSW’s value, and the growth and coarsening of Cu-rich precipitates were under the mixed mechanisms of Ostwald ripening and coalescence coarsening of neighboring precipitates. These results provided useful information for the preparation of multi-component alloyed steel with excellent mechanical properties to some extent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Shu S, Wirth BD, Wells PB, Morgan DD, Odette GR (2018) Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe-Cu and Fe-Cu-Mn model alloys: atom probe tomography reconstruction implications. Acta Mater 146:237–252CrossRef Shu S, Wirth BD, Wells PB, Morgan DD, Odette GR (2018) Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe-Cu and Fe-Cu-Mn model alloys: atom probe tomography reconstruction implications. Acta Mater 146:237–252CrossRef
3.
Zurück zum Zitat Wen YR, Hirata A, Zhang ZW, Fujitaa T, Liu CT, Jiang JH, Chen MW (2013) Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy. Acta Mater 61:2133–2147CrossRef Wen YR, Hirata A, Zhang ZW, Fujitaa T, Liu CT, Jiang JH, Chen MW (2013) Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy. Acta Mater 61:2133–2147CrossRef
4.
Zurück zum Zitat Rahnama A, Dashwood R, Sridhar S (2017) A phase-field method coupled with CALPHAD for the simulation of ordered κ-carbide precipitates in both disordered γ and α phases in low density steel. Comput Mater Sci 126:152–159CrossRef Rahnama A, Dashwood R, Sridhar S (2017) A phase-field method coupled with CALPHAD for the simulation of ordered κ-carbide precipitates in both disordered γ and α phases in low density steel. Comput Mater Sci 126:152–159CrossRef
5.
Zurück zum Zitat Jiao ZB, Luan JH, Miller MK, Chung YW, Liu CT (2016) Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Mater Today 20:142–154CrossRef Jiao ZB, Luan JH, Miller MK, Chung YW, Liu CT (2016) Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Mater Today 20:142–154CrossRef
6.
Zurück zum Zitat Chi CY, Yu HY, Dong JX, Liu WQ, Cheng SC, Liu ZD, Xie XS (2012) The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application. Prog Nat Sci 22:175–185CrossRef Chi CY, Yu HY, Dong JX, Liu WQ, Cheng SC, Liu ZD, Xie XS (2012) The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application. Prog Nat Sci 22:175–185CrossRef
7.
Zurück zum Zitat Shen Q, Xiong XY, Li T, Chen H, Cheng YM, Liu WQ (2018) Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe–Cu alloy. Mater Sci Eng, A 723:279–286CrossRef Shen Q, Xiong XY, Li T, Chen H, Cheng YM, Liu WQ (2018) Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe–Cu alloy. Mater Sci Eng, A 723:279–286CrossRef
8.
Zurück zum Zitat Zhang ZW, Liu CT, Wang XL, Miller MK, Ma D (2012) Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions. Acta Mater 60:3034–3046CrossRef Zhang ZW, Liu CT, Wang XL, Miller MK, Ma D (2012) Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions. Acta Mater 60:3034–3046CrossRef
9.
Zurück zum Zitat Soisson F, Barbu A, Martin G (1996) Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation. Acta Mater 44:3789–3800CrossRef Soisson F, Barbu A, Martin G (1996) Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation. Acta Mater 44:3789–3800CrossRef
10.
Zurück zum Zitat Biner SB, Rao W, Zhang Y (2015) The stability of precepitates and the role of lattice defects in Fe-1at%Cu-1at%Ni-1at%Mn alloy: a phase-field model study. J Nucl Mater 468:9–16CrossRef Biner SB, Rao W, Zhang Y (2015) The stability of precepitates and the role of lattice defects in Fe-1at%Cu-1at%Ni-1at%Mn alloy: a phase-field model study. J Nucl Mater 468:9–16CrossRef
11.
Zurück zum Zitat Jiao ZB, Luan JH, Miller MK, Liu CT (2015) Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater 97:58–67CrossRef Jiao ZB, Luan JH, Miller MK, Liu CT (2015) Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater 97:58–67CrossRef
12.
Zurück zum Zitat Cao L, Wu S, Liu B (2013) On the Cu precipitation behavior in thermo-mechanically embrittlement processed low copper reactor pressure vessel model steel. Mater Design 47:551–556CrossRef Cao L, Wu S, Liu B (2013) On the Cu precipitation behavior in thermo-mechanically embrittlement processed low copper reactor pressure vessel model steel. Mater Design 47:551–556CrossRef
13.
Zurück zum Zitat Zhang Z, Liu CT, Miller MK, Wang XL, Wen YR, Fujita T, Hirata A, Chen MW, Chen G, Chin BA (2013) A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci Rep 3:1327CrossRef Zhang Z, Liu CT, Miller MK, Wang XL, Wen YR, Fujita T, Hirata A, Chen MW, Chen G, Chin BA (2013) A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci Rep 3:1327CrossRef
14.
Zurück zum Zitat Eckert J, Holzer JC, Johnson WL (1993) Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe–Cu alloys. J Appl Phys 73:131–141CrossRef Eckert J, Holzer JC, Johnson WL (1993) Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe–Cu alloys. J Appl Phys 73:131–141CrossRef
15.
Zurück zum Zitat Isheim D, Kolli RP, Fine ME, Seidman DN (2006) An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe–Cu based high-strength low-carbon steels. Scripta Mater 55:35–40CrossRef Isheim D, Kolli RP, Fine ME, Seidman DN (2006) An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe–Cu based high-strength low-carbon steels. Scripta Mater 55:35–40CrossRef
16.
Zurück zum Zitat Kolli RP, Seidman DN (2007) Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe–Cu steel. Microsc Microanal 13:272–284CrossRef Kolli RP, Seidman DN (2007) Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe–Cu steel. Microsc Microanal 13:272–284CrossRef
17.
Zurück zum Zitat Osamura K, Okuda H, Takashima M, Asono K, Furusak AM (1993) Small-angle neutron scattering study of phase decomposition in Fe–Cu binary alloy. Mater Trans 34:305–311CrossRef Osamura K, Okuda H, Takashima M, Asono K, Furusak AM (1993) Small-angle neutron scattering study of phase decomposition in Fe–Cu binary alloy. Mater Trans 34:305–311CrossRef
18.
Zurück zum Zitat Othen PJ, Jenkins ML, Smith GDW, Phythian WJ (1991) Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe–Cu and Fe–Cu–Ni. Philos Mag Lett 64:383–391CrossRef Othen PJ, Jenkins ML, Smith GDW, Phythian WJ (1991) Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe–Cu and Fe–Cu–Ni. Philos Mag Lett 64:383–391CrossRef
19.
Zurück zum Zitat Vaynman S, Isheim D, Kolli RP, Bhat SP, Seidman DN (2008) High-strength low-carbon ferritic steel containing Cu–Fe–Ni–Al–Mn precipitates. Metall Mater Transa A 39:363–373CrossRef Vaynman S, Isheim D, Kolli RP, Bhat SP, Seidman DN (2008) High-strength low-carbon ferritic steel containing Cu–Fe–Ni–Al–Mn precipitates. Metall Mater Transa A 39:363–373CrossRef
20.
Zurück zum Zitat Miller MK, Wirth BD, Odette GR (2003) Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data. Mater Sci Eng, A 353:133–139CrossRef Miller MK, Wirth BD, Odette GR (2003) Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data. Mater Sci Eng, A 353:133–139CrossRef
21.
Zurück zum Zitat Zhang C, Enomoto M (2006) Study of the influence of alloying elements on Cu precipitation in steel by non-classical nucleation theory. Acta Mater 54:4183–4191CrossRef Zhang C, Enomoto M (2006) Study of the influence of alloying elements on Cu precipitation in steel by non-classical nucleation theory. Acta Mater 54:4183–4191CrossRef
22.
Zurück zum Zitat Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa Uemori R (1994) SANS study of phase decomposition in Fe–Cu alloy with Ni and Mn addition. Trans Iron Steel Inst Jpn 34:346–354CrossRef Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa Uemori R (1994) SANS study of phase decomposition in Fe–Cu alloy with Ni and Mn addition. Trans Iron Steel Inst Jpn 34:346–354CrossRef
23.
Zurück zum Zitat Xu G, Chu DF, Cai LL, Zhou BX, Wang W, Peng JC (2011) Investigation on the precipitation and structural evolution of Cu-rich nanophase in RPV model steel. Acta Metall Sin 47:905–911 Xu G, Chu DF, Cai LL, Zhou BX, Wang W, Peng JC (2011) Investigation on the precipitation and structural evolution of Cu-rich nanophase in RPV model steel. Acta Metall Sin 47:905–911
24.
Zurück zum Zitat Jiao ZB, Luan JH, Miller MK, Yu CY, Liu Y, Liu CT (2016) Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels. Acta Mater 110:31–43CrossRef Jiao ZB, Luan JH, Miller MK, Yu CY, Liu Y, Liu CT (2016) Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels. Acta Mater 110:31–43CrossRef
25.
Zurück zum Zitat Rawlings MJS, Liebscher CH, Asta M, Dunand DC (2017) Effect of titanium additions upon microstructure and properties of precipitation-strengthened Fe–Ni–Al–Cr ferritic alloys. Acta Mater 128:103–112CrossRef Rawlings MJS, Liebscher CH, Asta M, Dunand DC (2017) Effect of titanium additions upon microstructure and properties of precipitation-strengthened Fe–Ni–Al–Cr ferritic alloys. Acta Mater 128:103–112CrossRef
26.
Zurück zum Zitat Kolli RP, Seidman DN (2014) Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe–Cu steel characterized by atom-probe tomography. Microsc Microanal 2014:1727–1739CrossRef Kolli RP, Seidman DN (2014) Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe–Cu steel characterized by atom-probe tomography. Microsc Microanal 2014:1727–1739CrossRef
27.
Zurück zum Zitat Kolli RP, Mao Z, Seidman DN, Keane DT (2007) Identification of a Ni0.5(Al0.5−xMnx)B2 phase at the heterophase interfaces of Cu-rich precipitates in an α-Fe matrix. Appl Phys Lett 91:241903CrossRef Kolli RP, Mao Z, Seidman DN, Keane DT (2007) Identification of a Ni0.5(Al0.5−xMnx)B2 phase at the heterophase interfaces of Cu-rich precipitates in an α-Fe matrix. Appl Phys Lett 91:241903CrossRef
28.
Zurück zum Zitat Vincent E, Becquart CS, Pareige C, Pareige P, Domain C (2008) Precipitation of the FeCu system: a critical review of atomic kinetic Monte Carlo simulations. J Nucl Mater 373:387–401CrossRef Vincent E, Becquart CS, Pareige C, Pareige P, Domain C (2008) Precipitation of the FeCu system: a critical review of atomic kinetic Monte Carlo simulations. J Nucl Mater 373:387–401CrossRef
29.
Zurück zum Zitat You LJ, Hu LJ, Xie YP, Zhao SJ (2016) Influence of Cu precipitation on tensile properties of Fe–Cu–Ni ternary alloy at different temperatures by molecular dynamics simulation. Comput Mater Sci 118:236–244CrossRef You LJ, Hu LJ, Xie YP, Zhao SJ (2016) Influence of Cu precipitation on tensile properties of Fe–Cu–Ni ternary alloy at different temperatures by molecular dynamics simulation. Comput Mater Sci 118:236–244CrossRef
30.
Zurück zum Zitat Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef
31.
Zurück zum Zitat Zhao P, Shen C, Li J, Wang Y (2017) Effect of nonlinear and noncollinear transformation strain pathways in phase-field modeling of nucleation and growth during martensite transformation. Npj Comput Mater 3:19CrossRef Zhao P, Shen C, Li J, Wang Y (2017) Effect of nonlinear and noncollinear transformation strain pathways in phase-field modeling of nucleation and growth during martensite transformation. Npj Comput Mater 3:19CrossRef
32.
Zurück zum Zitat Sun YY, Zhao YH, Hou H, Zheng XJ, Guo HJ (2018) Microscopic phase-field simulation for the influence of aging process on the precipitation process of Ni75Al15Ti10 alloy. Rare Metal Mat Eng 47:3000–3007CrossRef Sun YY, Zhao YH, Hou H, Zheng XJ, Guo HJ (2018) Microscopic phase-field simulation for the influence of aging process on the precipitation process of Ni75Al15Ti10 alloy. Rare Metal Mat Eng 47:3000–3007CrossRef
33.
Zurück zum Zitat Li Y, Hu S, Sun X, Stan M (2017) A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. Npj Comput Mater 3:16CrossRef Li Y, Hu S, Sun X, Stan M (2017) A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. Npj Comput Mater 3:16CrossRef
34.
Zurück zum Zitat Miyoshi E, Takaki T, Ohno M, Shibuta Y, Sakane S, Shimokawabe T, Aoki T (2017) Ultra-large-scale phase-field simulation study of ideal grain growth. Npj Comput Mater 3:25CrossRef Miyoshi E, Takaki T, Ohno M, Shibuta Y, Sakane S, Shimokawabe T, Aoki T (2017) Ultra-large-scale phase-field simulation study of ideal grain growth. Npj Comput Mater 3:25CrossRef
35.
Zurück zum Zitat Ma QS, Ma ZQ, Zhao YH, Yu LM, Liu CX, Guo QY, Hossain A, Shahriar MD, Alshehri AA, Yamauchi Y, Liu YC (2018) Inversion calculation of the interatomic potentials for Ni0.75AlxMo0.25−x alloy employing microscopic phase-field model. Sci Adv Mater 10:904–912CrossRef Ma QS, Ma ZQ, Zhao YH, Yu LM, Liu CX, Guo QY, Hossain A, Shahriar MD, Alshehri AA, Yamauchi Y, Liu YC (2018) Inversion calculation of the interatomic potentials for Ni0.75AlxMo0.25−x alloy employing microscopic phase-field model. Sci Adv Mater 10:904–912CrossRef
36.
Zurück zum Zitat Zhang JB, Wang HF, Kuang WW, Zhang YC, Li S, Zhao YH, Herlach DM (2018) Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification. Acta Mater 148:86–99CrossRef Zhang JB, Wang HF, Kuang WW, Zhang YC, Li S, Zhao YH, Herlach DM (2018) Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification. Acta Mater 148:86–99CrossRef
37.
Zurück zum Zitat Koyama T, Onodera H (2005) Computer simulation of phase decomposition in Fe–Cu–Mn–Ni quaternary alloy based on the phase-field method. Mater Trans 46:1187–1192CrossRef Koyama T, Onodera H (2005) Computer simulation of phase decomposition in Fe–Cu–Mn–Ni quaternary alloy based on the phase-field method. Mater Trans 46:1187–1192CrossRef
38.
Zurück zum Zitat Saunders N, Miodownik PA (1992) Calphad: calculation of phase diagrams: a comprehensive guide. Pergamon, Germany Saunders N, Miodownik PA (1992) Calphad: calculation of phase diagrams: a comprehensive guide. Pergamon, Germany
39.
Zurück zum Zitat Luo ZL, Du Y, Liu YL, Tang S, Pan Y, Mao H, Peng YB, Liu WS, Liu ZK (2018) Phase field simulation of the phase separation in the TiC-ZrC-WC system. Calphad 63:190–195CrossRef Luo ZL, Du Y, Liu YL, Tang S, Pan Y, Mao H, Peng YB, Liu WS, Liu ZK (2018) Phase field simulation of the phase separation in the TiC-ZrC-WC system. Calphad 63:190–195CrossRef
40.
41.
Zurück zum Zitat Koyama T, Onodera H (2006) Modeling of microstructure changes in Fe–Cr–Co magnetic alloy using the phase-field method. J Phase Equilib Diffus 27:22–29CrossRef Koyama T, Onodera H (2006) Modeling of microstructure changes in Fe–Cr–Co magnetic alloy using the phase-field method. J Phase Equilib Diffus 27:22–29CrossRef
42.
Zurück zum Zitat Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. Calphad 2:227–238CrossRef Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. Calphad 2:227–238CrossRef
43.
Zurück zum Zitat Li YS, Zhu H, Zhang L, Cheng XL (2012) Phase decomposition and morphology characteristic in thermal aging Fe–Cr alloys under applied strain: a phase-field simulation. J Nuc Mater 429:13–18CrossRef Li YS, Zhu H, Zhang L, Cheng XL (2012) Phase decomposition and morphology characteristic in thermal aging Fe–Cr alloys under applied strain: a phase-field simulation. J Nuc Mater 429:13–18CrossRef
44.
Zurück zum Zitat Koyama T, Hashimoto K, Onodera H (2006) Phase-field simulation of phase transformation in Fe–Cu–Mn–Ni quaternary alloy. Mater Trans 47:2765–2772CrossRef Koyama T, Hashimoto K, Onodera H (2006) Phase-field simulation of phase transformation in Fe–Cu–Mn–Ni quaternary alloy. Mater Trans 47:2765–2772CrossRef
45.
Zurück zum Zitat Metals data book, 3rd Ed., Japan Institute of Metals ed., Maruzen, Tokyo, Japan, 1993 Metals data book, 3rd Ed., Japan Institute of Metals ed., Maruzen, Tokyo, Japan, 1993
46.
Zurück zum Zitat Taylor A (1958) Constitution and magnetic properties of iron-rich iron-aluminum alloys. J Phys Chem Solids 6:16–37CrossRef Taylor A (1958) Constitution and magnetic properties of iron-rich iron-aluminum alloys. J Phys Chem Solids 6:16–37CrossRef
47.
Zurück zum Zitat Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32:268–294CrossRef Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32:268–294CrossRef
48.
Zurück zum Zitat Li BY, Zhang L, Li CL, Li QL, Chen J, Shu GG, Weng YQ, Xu B, Hu SY, Liu W (2018) The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe–Cu–Mn (Ni) ternary alloys. J Nucl Mater 507:59–67CrossRef Li BY, Zhang L, Li CL, Li QL, Chen J, Shu GG, Weng YQ, Xu B, Hu SY, Liu W (2018) The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe–Cu–Mn (Ni) ternary alloys. J Nucl Mater 507:59–67CrossRef
49.
Zurück zum Zitat Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258CrossRef Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258CrossRef
50.
Zurück zum Zitat Allen SM, Cahn JW (1972) Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall 20:423–433CrossRef Allen SM, Cahn JW (1972) Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall 20:423–433CrossRef
51.
Zurück zum Zitat Kitashima T, Harada H (2009) A new phase-field method for simulating γ′ precipitation in multicomponent nickel-base superalloys. Acta Mater 57:2020–2028CrossRef Kitashima T, Harada H (2009) A new phase-field method for simulating γ′ precipitation in multicomponent nickel-base superalloys. Acta Mater 57:2020–2028CrossRef
52.
Zurück zum Zitat Tsukada Y, Koyama T, Murata Y, Miurac N, Kondo Y (2014) Estimation of γ/γ′ diffusion mobility and three-dimensional phase-field simulation of rafting in a commercial nickel-based superalloy. Comput Mater Sci 83:371–374CrossRef Tsukada Y, Koyama T, Murata Y, Miurac N, Kondo Y (2014) Estimation of γ/γ′ diffusion mobility and three-dimensional phase-field simulation of rafting in a commercial nickel-based superalloy. Comput Mater Sci 83:371–374CrossRef
53.
Zurück zum Zitat Segawa M, Yamanaka A, Nomoto S (2017) Multi-phase-field simulation of cyclic phase transformation in Fe–C–Mn and Fe–C–Mn–Si alloys. Comput Mater Sci 136:67–75CrossRef Segawa M, Yamanaka A, Nomoto S (2017) Multi-phase-field simulation of cyclic phase transformation in Fe–C–Mn and Fe–C–Mn–Si alloys. Comput Mater Sci 136:67–75CrossRef
54.
Zurück zum Zitat Wróbel JS, Nguyen-Manh D, Lavrentiev MY, Muzyk M (2015) Phase stability of ternary fcc and bcc Fe–Cr–Ni alloys. Phys Rev B 91:024108CrossRef Wróbel JS, Nguyen-Manh D, Lavrentiev MY, Muzyk M (2015) Phase stability of ternary fcc and bcc Fe–Cr–Ni alloys. Phys Rev B 91:024108CrossRef
55.
Zurück zum Zitat Liu DD, Zhang LJ, Du Y, Jin ZP (2015) Simulation of atomic mobilities, diffusion coefficients and diffusion paths in bcc_A2 and bcc_B2 phases of the Al–Ni–Fe system. J Alloy Compd 634:148–155CrossRef Liu DD, Zhang LJ, Du Y, Jin ZP (2015) Simulation of atomic mobilities, diffusion coefficients and diffusion paths in bcc_A2 and bcc_B2 phases of the Al–Ni–Fe system. J Alloy Compd 634:148–155CrossRef
56.
Zurück zum Zitat Deng S, Chen W, Zhong J, Zhang LJ, Du Y, Chen L (2017) Diffusion study in bcc_A2 Fe–Mn–Si system: experimental measurement and CALPHAD assessment. Calphad 56:230–240CrossRef Deng S, Chen W, Zhong J, Zhang LJ, Du Y, Chen L (2017) Diffusion study in bcc_A2 Fe–Mn–Si system: experimental measurement and CALPHAD assessment. Calphad 56:230–240CrossRef
57.
Zurück zum Zitat Hu YS, Wang G, Ji YZ, Wang LP, Rong YM, Chen LQ (2019) Study of θ’ precipitation behavior in Al–Cu–Cd alloys by phase-field modeling. Mater Sci Eng A-Struct 746:105–114CrossRef Hu YS, Wang G, Ji YZ, Wang LP, Rong YM, Chen LQ (2019) Study of θ’ precipitation behavior in Al–Cu–Cd alloys by phase-field modeling. Mater Sci Eng A-Struct 746:105–114CrossRef
58.
Zurück zum Zitat Gerhard N, Cornelis T (2011) Self-diffusion and impurity diffusion in pure metals. Pergamon, Germany Gerhard N, Cornelis T (2011) Self-diffusion and impurity diffusion in pure metals. Pergamon, Germany
59.
Zurück zum Zitat Bergner D, Khaddour Y (1993) Impurity and chemical diffusion of Al in BCC and Fcc iron. Defect Diffus Forum 6:95–98 Bergner D, Khaddour Y (1993) Impurity and chemical diffusion of Al in BCC and Fcc iron. Defect Diffus Forum 6:95–98
60.
Zurück zum Zitat Shu SP, Wells PB, Almirall N, Odette GR, Morgan DD (2018) Thermodynamics and kinetics of core-shell versus appendage co-precipitation morphologies: an example in the Fe–Cu–Mn–Ni–Si system. Acta Mater 157:298–306CrossRef Shu SP, Wells PB, Almirall N, Odette GR, Morgan DD (2018) Thermodynamics and kinetics of core-shell versus appendage co-precipitation morphologies: an example in the Fe–Cu–Mn–Ni–Si system. Acta Mater 157:298–306CrossRef
61.
Zurück zum Zitat Miller MK, Russell KF (2007) Embrittlement of RPV steels: an atom probe tomography perspective. J Nucl Mater 371:145–160CrossRef Miller MK, Russell KF (2007) Embrittlement of RPV steels: an atom probe tomography perspective. J Nucl Mater 371:145–160CrossRef
62.
Zurück zum Zitat Miller MK, Wirth BD, Odette GR (2003) Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data. Mater Sci Eng A-Struct 353:133–139CrossRef Miller MK, Wirth BD, Odette GR (2003) Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data. Mater Sci Eng A-Struct 353:133–139CrossRef
63.
Zurück zum Zitat Gorbatov OI, Gornostyrev YN, Korzhavyi PA, Ruban AV (2015) Effect of Ni and Mn on the formation of Cu precipitates in α-Fe. Scripta Mater 102:11–14CrossRef Gorbatov OI, Gornostyrev YN, Korzhavyi PA, Ruban AV (2015) Effect of Ni and Mn on the formation of Cu precipitates in α-Fe. Scripta Mater 102:11–14CrossRef
64.
Zurück zum Zitat Kostorz G (2001) Phase transformations in materials. Wiley-VCH, GermanyCrossRef Kostorz G (2001) Phase transformations in materials. Wiley-VCH, GermanyCrossRef
65.
Zurück zum Zitat Yan ZL, Li YS, Zhou XR, Zhang YD, Hu R (2017) Evolution of nanoscale Cr-rich phase in a Fe-35 at.% Cr alloy during isothermal aging. J Alloy Compd 725:1035–1104CrossRef Yan ZL, Li YS, Zhou XR, Zhang YD, Hu R (2017) Evolution of nanoscale Cr-rich phase in a Fe-35 at.% Cr alloy during isothermal aging. J Alloy Compd 725:1035–1104CrossRef
66.
Zurück zum Zitat Shen Q, Wang XJ, Zhao AY, He YF, Fang XL, Ma JR, Liu WQ (2016) Effects of Mn on multi-precipitates evolution of cu-rich and NiAl phase in steels. Acta Metall Sin 52:513–518 Shen Q, Wang XJ, Zhao AY, He YF, Fang XL, Ma JR, Liu WQ (2016) Effects of Mn on multi-precipitates evolution of cu-rich and NiAl phase in steels. Acta Metall Sin 52:513–518
67.
Zurück zum Zitat Miettinen J (2003) Thermodynamic description of the Cu–Fe–Mn system at the Cu–Fe side. Calphad 27:141–145CrossRef Miettinen J (2003) Thermodynamic description of the Cu–Fe–Mn system at the Cu–Fe side. Calphad 27:141–145CrossRef
68.
Zurück zum Zitat Jansson A (1987) TRITA-MAC-0340. Materials Research Centre, Royal Institute of Technology, Stockholm Jansson A (1987) TRITA-MAC-0340. Materials Research Centre, Royal Institute of Technology, Stockholm
69.
Zurück zum Zitat Dreval LA, Turchanin MA, Agraval PG (2014) Thermodynamic assessment of the Cu–Fe–Ni system. J Alloy Compd 587:533–543CrossRef Dreval LA, Turchanin MA, Agraval PG (2014) Thermodynamic assessment of the Cu–Fe–Ni system. J Alloy Compd 587:533–543CrossRef
70.
Zurück zum Zitat Miettinen J (2003) Thermodynamic description of the Cu–Al–Fe system at the Cu–Fe side. Calphad 27:91–102CrossRef Miettinen J (2003) Thermodynamic description of the Cu–Al–Fe system at the Cu–Fe side. Calphad 27:91–102CrossRef
71.
Zurück zum Zitat Miettinen J (2003) Thermodynamic description of the Cu–Mn–Ni system at the Cu–Ni side. Calphad 27:147–152CrossRef Miettinen J (2003) Thermodynamic description of the Cu–Mn–Ni system at the Cu–Ni side. Calphad 27:147–152CrossRef
72.
Zurück zum Zitat Miettinen J (2003) Thermodynamic description of the Cu–Al–Mn system in the Copper-Rich side. Calphad 27:103–114CrossRef Miettinen J (2003) Thermodynamic description of the Cu–Al–Mn system in the Copper-Rich side. Calphad 27:103–114CrossRef
73.
Zurück zum Zitat Miettinen J (2005) Thermodynamic description of the Cu–Al–Ni system in the Copper-Rich side. Calphad 29:40–48CrossRef Miettinen J (2005) Thermodynamic description of the Cu–Al–Ni system in the Copper-Rich side. Calphad 29:40–48CrossRef
Metadaten
Titel
Phase-field modeling of microstructure evolution of Cu-rich phase in Fe–Cu–Mn–Ni–Al quinary system coupled with thermodynamic databases
verfasst von
Sun Yuanyang
Zhao Yuhong
Zhao Baojun
Yang Wenkui
Li Xiaoling
Hou Hua
Publikationsdatum
15.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03678-3

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.