Skip to main content
Erschienen in: Journal of Materials Science 16/2019

20.05.2019 | Electronic materials

Ionic liquids-filled patterned cavities improve transmittance of transparent and stretchable electronic polydimethylsiloxane films

verfasst von: Pengdong Feng, Xinyu Wang, Beibei Lu, Guangxing Pan, Xuesong Leng, Xing Ma, Jiaheng Zhang, Weiwei Zhao

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transparent electrodes for flexible and wearable devices require considerable stretchability and patterned conductive materials. Transparent and stretchable polydimethylsiloxane (PDMS) films with patterned cavities were prepared by laser processing and transfer printing. Transparent conductive ionic liquids (ILs) and aqueous solution (AS) were injected into the cavities, obtaining electrodes with transmittance in the visible range of 99.94% (relative to blank PDMS films) and 92.80% (relative to air). This transmittance was almost identical to that of a blank PDMS film. The maximum tensile strain applied to the electrodes was 117.23%, and the resistance of the electrodes with network patterns measured by the four-probe method was 3.20 kΩ. After 10,000 stretching/releasing cycles under strain of 0–50%, these electrodes still performed optimally. The ILs and AS showed various transmittance and electrical properties. The electrodes with ILs had higher transmittance, while those with AS showed increased conductivity. These electrodes with five patterns (serpentine, circle, straight line, fold line, and rhombus) were analyzed. The pattern containing curves with a large curvature would result in a severe local stress concentration in the stretching process. Patterns containing parallel curves could optimize electrical conductivity. And patterns containing complex curves had a certain effect on the transmittance. In addition, taking advantage of the fact that the elastomer and the liquid can deform at will, these electrodes were used to fabricate two pressure sensors and two strain sensors, which were employed to demonstrate their sensitivity stability during cycling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen T, Xue Y, Roy AK, Dai L (2014) Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8(1):1039–1046CrossRef Chen T, Xue Y, Roy AK, Dai L (2014) Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8(1):1039–1046CrossRef
2.
Zurück zum Zitat An BW, Gwak E-J, Kim K, Kim Y-C, Jang J, Kim J-Y et al (2016) Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett 16(1):471–478CrossRef An BW, Gwak E-J, Kim K, Kim Y-C, Jang J, Kim J-Y et al (2016) Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett 16(1):471–478CrossRef
3.
Zurück zum Zitat Zhang J, Liu X, Xu W, Luo W, Li M, Chu F et al (2018) Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett 18(5):2903–2911CrossRef Zhang J, Liu X, Xu W, Luo W, Li M, Chu F et al (2018) Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett 18(5):2903–2911CrossRef
4.
Zurück zum Zitat Hwang B-U, Lee J-H, Tran Quang T, Roh E, Kim D-I, Kim S-W et al (2015) Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9(9):8801–8810CrossRef Hwang B-U, Lee J-H, Tran Quang T, Roh E, Kim D-I, Kim S-W et al (2015) Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9(9):8801–8810CrossRef
5.
Zurück zum Zitat Hong J-Y, Kim W, Choi D, Kong J, Park HS (2016) Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10(10):9446–9455CrossRef Hong J-Y, Kim W, Choi D, Kong J, Park HS (2016) Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10(10):9446–9455CrossRef
6.
Zurück zum Zitat Sun J, Pu X, Liu M, Yu A, Du C, Zhai J et al (2018) Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12(6):6147–6155CrossRef Sun J, Pu X, Liu M, Yu A, Du C, Zhai J et al (2018) Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12(6):6147–6155CrossRef
7.
Zurück zum Zitat Han S, Hong S, Ham J, Yeo J, Lee J, Kang B et al (2014) Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26(33):5808–5814CrossRef Han S, Hong S, Ham J, Yeo J, Lee J, Kang B et al (2014) Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26(33):5808–5814CrossRef
8.
Zurück zum Zitat Li R, Parvez K, Hinkel F, Feng X, Muellen K (2013) Bioinspired wafer-scale production of highly stretchable carbon films for transparent conductive electrodes. Angew Chem Int Ed 52(21):5535–5538CrossRef Li R, Parvez K, Hinkel F, Feng X, Muellen K (2013) Bioinspired wafer-scale production of highly stretchable carbon films for transparent conductive electrodes. Angew Chem Int Ed 52(21):5535–5538CrossRef
9.
Zurück zum Zitat Liu H-S, Pan B-C, Liou G-S (2017) Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9(7):2633–2639CrossRef Liu H-S, Pan B-C, Liou G-S (2017) Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9(7):2633–2639CrossRef
10.
Zurück zum Zitat An BW, Hyun BG, Kim S-Y, Kim M, Lee M-S, Lee K et al (2014) Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett 14(11):6322–6328CrossRef An BW, Hyun BG, Kim S-Y, Kim M, Lee M-S, Lee K et al (2014) Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett 14(11):6322–6328CrossRef
11.
Zurück zum Zitat Parida K, Kumar V, Wang J, Bhavanasi V, Bendi R, Lee PS (2017) Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv Mater 29(37):1702181CrossRef Parida K, Kumar V, Wang J, Bhavanasi V, Bendi R, Lee PS (2017) Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv Mater 29(37):1702181CrossRef
12.
Zurück zum Zitat Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y et al (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015CrossRef Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y et al (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015CrossRef
13.
Zurück zum Zitat Nunez CG, Navaraj WT, Polat EO, Dahiya R (2017) Energy-autonomous, flexible, and transparent tactile skin. Adv Funct Mater 27(18):1606287CrossRef Nunez CG, Navaraj WT, Polat EO, Dahiya R (2017) Energy-autonomous, flexible, and transparent tactile skin. Adv Funct Mater 27(18):1606287CrossRef
14.
Zurück zum Zitat Sun J-Y, Keplinger C, Whitesides GM, Suo Z (2014) Ionic skin. Adv Mater 26(45):7608–7614CrossRef Sun J-Y, Keplinger C, Whitesides GM, Suo Z (2014) Ionic skin. Adv Mater 26(45):7608–7614CrossRef
15.
Zurück zum Zitat Bae GY, Pak SW, Kim D, Lee G, Kim DH, Chung Y et al (2016) Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28(26):5300–5306CrossRef Bae GY, Pak SW, Kim D, Lee G, Kim DH, Chung Y et al (2016) Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28(26):5300–5306CrossRef
16.
Zurück zum Zitat Zhai Q, Yang Y (2017) Highly stretchable variable-transmittance skin for ultrasensitive and wearable strain sensing. Adv Mater Technol 2(10):1700161CrossRef Zhai Q, Yang Y (2017) Highly stretchable variable-transmittance skin for ultrasensitive and wearable strain sensing. Adv Mater Technol 2(10):1700161CrossRef
17.
Zurück zum Zitat Wang L, Gao G, Zhou Y, Xu T, Chen J, Wang R et al (2019) Tough, adhesive, self-healable and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl Mater Interfaces 11(3):3506–3515CrossRef Wang L, Gao G, Zhou Y, Xu T, Chen J, Wang R et al (2019) Tough, adhesive, self-healable and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl Mater Interfaces 11(3):3506–3515CrossRef
18.
Zurück zum Zitat Liu X, Liu D, Lee J-H, Zheng Q, Du X, Zhang X et al (2019) Spider web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl Mater Interfaces 11(2):2282–2294CrossRef Liu X, Liu D, Lee J-H, Zheng Q, Du X, Zhang X et al (2019) Spider web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl Mater Interfaces 11(2):2282–2294CrossRef
19.
Zurück zum Zitat Kim KK, Hong S, Cho HM, Lee J, Suh YD, Ham J et al (2015) Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett 15(8):5240–5247CrossRef Kim KK, Hong S, Cho HM, Lee J, Suh YD, Ham J et al (2015) Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett 15(8):5240–5247CrossRef
20.
Zurück zum Zitat Wang Z, Zhang L, Liu J, Li C (2019) Highly stretchable, sensitive and transparent strain sensors with controllable in-plane mesh structure. ACS Appl Mater Interfaces 11(5):5316–5324CrossRef Wang Z, Zhang L, Liu J, Li C (2019) Highly stretchable, sensitive and transparent strain sensors with controllable in-plane mesh structure. ACS Appl Mater Interfaces 11(5):5316–5324CrossRef
21.
Zurück zum Zitat Duan S, Wang Z, Zhang L, Liu J, Li C (2018) A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv Mater Technol 3(6):1800020CrossRef Duan S, Wang Z, Zhang L, Liu J, Li C (2018) A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv Mater Technol 3(6):1800020CrossRef
22.
Zurück zum Zitat Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792CrossRef Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792CrossRef
23.
Zurück zum Zitat Nie B, Li X, Shao J, Li X, Tian H, Wang D et al (2017) Flexible and transparent strain sensors with embedded multiwalled carbon nanotubes meshes. ACS Appl Mater Interfaces 9(46):40681–40689CrossRef Nie B, Li X, Shao J, Li X, Tian H, Wang D et al (2017) Flexible and transparent strain sensors with embedded multiwalled carbon nanotubes meshes. ACS Appl Mater Interfaces 9(46):40681–40689CrossRef
24.
Zurück zum Zitat Gao Y, Li Q, Wu R, Sha J, Lu Y, Xuan F (2019) Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv Funct Mater 29(2):1806786CrossRef Gao Y, Li Q, Wu R, Sha J, Lu Y, Xuan F (2019) Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv Funct Mater 29(2):1806786CrossRef
25.
Zurück zum Zitat Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z et al (2011) High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv Mater 23(45):5440–5444CrossRef Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z et al (2011) High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv Mater 23(45):5440–5444CrossRef
26.
Zurück zum Zitat Yang W, Li N-W, Zhao S, Yuan Z, Wang J, Du X et al (2018) A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv Mater Technol 3(2):1700241CrossRef Yang W, Li N-W, Zhao S, Yuan Z, Wang J, Du X et al (2018) A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv Mater Technol 3(2):1700241CrossRef
27.
Zurück zum Zitat Lee D, Lee H, Jeong Y, Ahn Y, Nam G, Lee Y (2016) Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles. Adv Mater 28(42):9364–9369CrossRef Lee D, Lee H, Jeong Y, Ahn Y, Nam G, Lee Y (2016) Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles. Adv Mater 28(42):9364–9369CrossRef
28.
Zurück zum Zitat Kulkarni MR, John RA, Rajput M, Tiwari N, Yantara N, Anh Chien N et al (2017) Transparent flexible multifunctional nanostructured architectures for non-optical readout, proximity, and pressure sensing. ACS Appl Mater Interfaces 9(17):15015–15021CrossRef Kulkarni MR, John RA, Rajput M, Tiwari N, Yantara N, Anh Chien N et al (2017) Transparent flexible multifunctional nanostructured architectures for non-optical readout, proximity, and pressure sensing. ACS Appl Mater Interfaces 9(17):15015–15021CrossRef
29.
Zurück zum Zitat Sun Q, Kim DH, Park SS, Lee NY, Zhang Y, Lee JH et al (2014) Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv Mater 26(27):4735–4740CrossRef Sun Q, Kim DH, Park SS, Lee NY, Zhang Y, Lee JH et al (2014) Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv Mater 26(27):4735–4740CrossRef
30.
Zurück zum Zitat Yildirim A, Rahimi R, Shams Es-haghi S, Vadlamani A, Peng F, Oscai M, Cakmak M (2018) Roll-to-roll (R2R) production of ultrasensitive, flexible, and transparent pressure sensors based on vertically aligned lead zirconate titanate and graphene nanoplatelets. Adv Mater Technol 4:1800425CrossRef Yildirim A, Rahimi R, Shams Es-haghi S, Vadlamani A, Peng F, Oscai M, Cakmak M (2018) Roll-to-roll (R2R) production of ultrasensitive, flexible, and transparent pressure sensors based on vertically aligned lead zirconate titanate and graphene nanoplatelets. Adv Mater Technol 4:1800425CrossRef
31.
Zurück zum Zitat Ge G, Zhang Y, Shao J, Wang W, Si W, Huang W et al (2018) Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv Funct Mater 28(32):1802576CrossRef Ge G, Zhang Y, Shao J, Wang W, Si W, Huang W et al (2018) Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv Funct Mater 28(32):1802576CrossRef
32.
Zurück zum Zitat Ramuz M, Tee BCK, Tok JBH, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24(24):3223–3227CrossRef Ramuz M, Tee BCK, Tok JBH, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24(24):3223–3227CrossRef
33.
Zurück zum Zitat Ma R, Menamparambath MM, Nikolaev P, Baik S (2013) Transparent stretchable single-walled carbon nanotube-polymer composite films with near-infrared fluorescence. Adv Mater 25(18):2548–2553CrossRef Ma R, Menamparambath MM, Nikolaev P, Baik S (2013) Transparent stretchable single-walled carbon nanotube-polymer composite films with near-infrared fluorescence. Adv Mater 25(18):2548–2553CrossRef
34.
Zurück zum Zitat Wang X, Yang C, Jin J, Li X, Cheng Q, Wang G (2018) High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs @conductive polymer composite electrodes. J Mater Chem A 6:4432–4442CrossRef Wang X, Yang C, Jin J, Li X, Cheng Q, Wang G (2018) High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs @conductive polymer composite electrodes. J Mater Chem A 6:4432–4442CrossRef
35.
Zurück zum Zitat Ponnamma D, Sadasivuni KK, Cabibihan J-J, Yoon WJ, Kumar B (2016) Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors. Appl Phys Lett 108(17):171906CrossRef Ponnamma D, Sadasivuni KK, Cabibihan J-J, Yoon WJ, Kumar B (2016) Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors. Appl Phys Lett 108(17):171906CrossRef
36.
Zurück zum Zitat Kim D-H, Yu K-C, Kim Y, Kim J-W (2015) Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane–urea. ACS Appl Mater Interfaces 7(28):15214–15222CrossRef Kim D-H, Yu K-C, Kim Y, Kim J-W (2015) Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane–urea. ACS Appl Mater Interfaces 7(28):15214–15222CrossRef
37.
Zurück zum Zitat Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH et al (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24(25):3326–3332CrossRef Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH et al (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24(25):3326–3332CrossRef
38.
Zurück zum Zitat Kim Y, Jun S, Ju B-K, Kim J-W (2017) Heterogeneous configuration of a Ag nanowire/polymer composite structure for selectively stretchable transparent electrodes. ACS Appl Mater Interfaces 9(8):7505–7514CrossRef Kim Y, Jun S, Ju B-K, Kim J-W (2017) Heterogeneous configuration of a Ag nanowire/polymer composite structure for selectively stretchable transparent electrodes. ACS Appl Mater Interfaces 9(8):7505–7514CrossRef
39.
Zurück zum Zitat Yoon SG, Koo H-J, Chang ST (2015) Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl Mater Interfaces 7(49):27562–27570CrossRef Yoon SG, Koo H-J, Chang ST (2015) Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl Mater Interfaces 7(49):27562–27570CrossRef
40.
Zurück zum Zitat Cheng S, Wu Z (2012) Microfluidic electronics. Lab Chip 12(16):2782–2791CrossRef Cheng S, Wu Z (2012) Microfluidic electronics. Lab Chip 12(16):2782–2791CrossRef
41.
Zurück zum Zitat Park Y-L, Chen B-R, Wood RJ (2012) Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens J 12(8):2711–2718CrossRef Park Y-L, Chen B-R, Wood RJ (2012) Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens J 12(8):2711–2718CrossRef
Metadaten
Titel
Ionic liquids-filled patterned cavities improve transmittance of transparent and stretchable electronic polydimethylsiloxane films
verfasst von
Pengdong Feng
Xinyu Wang
Beibei Lu
Guangxing Pan
Xuesong Leng
Xing Ma
Jiaheng Zhang
Weiwei Zhao
Publikationsdatum
20.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03682-7

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.