Skip to main content
Erschienen in: Journal of Materials Science 16/2019

16.05.2019 | Composites & nanocomposites

Multi-walled carbon nanotube-reinforced boron carbide matrix composites fabricated via ultra-high-pressure sintering

verfasst von: Bing Wang, Yuan Wang, Yun Zhou, Fugang Qi, Qiujie Ding, Junyu Li, Xiaoping OuYang, Lixin Liu

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To well preserve the fine structure of MWCNTs in the fabrication of ceramic matrix composites, an ultra-high-pressure sintering method is employed here. The effects of the MWCNTs on the microstructure and properties of the composites are investigated. The B4C-MWCNTs composites are prepared under the pressure of 4.5 GPa at a low sintering temperature of 1300 °C for 10 min. The results indicate that the densification method is beneficial to protect MWCNTs from destruction and create a good interfacial combination between the MWCNTs and the matrix. The indentation crack length of the B4C-MWCNTs composites decreases and the electrical conductivity increases continuously with the increase of MWCNTs additive amount, reaching the optimum values at 5 vol% MWCNTs addition. The microstructural observations indicate that the reinforcement mechanism of the composites is mainly the crack branching, crack deflection, bridging, and pullout of MWCNTs. This finding provides a promising approach for producing more robust ceramics with CNTs reinforcing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thévenot F (1990) Boron carbide—a comprehensive review. J Eur Ceram Soc 6(4):205–225CrossRef Thévenot F (1990) Boron carbide—a comprehensive review. J Eur Ceram Soc 6(4):205–225CrossRef
2.
Zurück zum Zitat Domnich V, Reynaud S, Haber RA, Manish C (2011) Boron carbide: structure, properties, and stability under stress. J Am Ceram Soc 94(11):3605–3628CrossRef Domnich V, Reynaud S, Haber RA, Manish C (2011) Boron carbide: structure, properties, and stability under stress. J Am Ceram Soc 94(11):3605–3628CrossRef
3.
Zurück zum Zitat Yamada S, Hirao K, Yamauchi Y, Kanzaki S (2003) High strength B4C–TiB2 composites fabricated by reaction hot-pressing. J Eur Ceram Soc 23(7):1123–1130CrossRef Yamada S, Hirao K, Yamauchi Y, Kanzaki S (2003) High strength B4C–TiB2 composites fabricated by reaction hot-pressing. J Eur Ceram Soc 23(7):1123–1130CrossRef
4.
Zurück zum Zitat Stoto T, Housseau N, Zuppiroli L, Kryger B (1990) Swelling and microcracking of boron carbide subjected to fast neutron irradiations. J Appl Phys 68(7):3198–3206CrossRef Stoto T, Housseau N, Zuppiroli L, Kryger B (1990) Swelling and microcracking of boron carbide subjected to fast neutron irradiations. J Appl Phys 68(7):3198–3206CrossRef
5.
Zurück zum Zitat Kobayashi T, Yoshida K, Yano T (2013) Microstructure, mechanical and thermal properties of B4C/CNT composites with Al additive. J Nucl Mater 440(1):524–529CrossRef Kobayashi T, Yoshida K, Yano T (2013) Microstructure, mechanical and thermal properties of B4C/CNT composites with Al additive. J Nucl Mater 440(1):524–529CrossRef
6.
Zurück zum Zitat Ipek M, Zeytin S, Bindal C (2011) An evaluation of Al2O3–ZrO2 composites produced by coprecipitation method. J Alloys Compd 509(2):486–489CrossRef Ipek M, Zeytin S, Bindal C (2011) An evaluation of Al2O3–ZrO2 composites produced by coprecipitation method. J Alloys Compd 509(2):486–489CrossRef
7.
Zurück zum Zitat Sarkar S, Das PK (2012) Microstructure and physicomechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Ceram Int 38(1):423–432CrossRef Sarkar S, Das PK (2012) Microstructure and physicomechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Ceram Int 38(1):423–432CrossRef
8.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRef
9.
Zurück zum Zitat Ruoff RS (2018) Strong bundles based on carbon nanotubes. Nat Nanotechnol 13(7):533–534CrossRef Ruoff RS (2018) Strong bundles based on carbon nanotubes. Nat Nanotechnol 13(7):533–534CrossRef
10.
Zurück zum Zitat Hanzel O, Sedláček J, Šajgalík P (2014) New approach for distribution of carbon nanotubes in alumina matrix. J Eur Ceram Soc 34(7):1845–1851CrossRef Hanzel O, Sedláček J, Šajgalík P (2014) New approach for distribution of carbon nanotubes in alumina matrix. J Eur Ceram Soc 34(7):1845–1851CrossRef
11.
Zurück zum Zitat Jiang D, Thomson K, Kuntz J, Ager J, Mukherjee A (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56(11):959–962CrossRef Jiang D, Thomson K, Kuntz J, Ager J, Mukherjee A (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56(11):959–962CrossRef
12.
Zurück zum Zitat Inam F, Yan H, Reece MJ, Peijs T (2010) Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite. Adv Appl Ceram 109(4):240–247CrossRef Inam F, Yan H, Reece MJ, Peijs T (2010) Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite. Adv Appl Ceram 109(4):240–247CrossRef
14.
Zurück zum Zitat Liu L, Li X, He Q, Xu L, Cao X, Peng X, Meng C, Wang W, Zhu W, Wang Y (2018) Sintering dense boron carbide without grain growth under high pressure. J Am Ceram Soc 101(3):1289–1297CrossRef Liu L, Li X, He Q, Xu L, Cao X, Peng X, Meng C, Wang W, Zhu W, Wang Y (2018) Sintering dense boron carbide without grain growth under high pressure. J Am Ceram Soc 101(3):1289–1297CrossRef
15.
Zurück zum Zitat Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481CrossRef Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481CrossRef
16.
Zurück zum Zitat Zhan GD, Mukherjee AK (2004) Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties. Int J Appl Ceram Technol 1(2):161–171CrossRef Zhan GD, Mukherjee AK (2004) Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties. Int J Appl Ceram Technol 1(2):161–171CrossRef
17.
Zurück zum Zitat Mohammad K, Saheb N (2016) Molecular level mixing: an approach for synthesis of homogenous hybrid ceramic nanocomposite powders. Powder Technol 291:121–130CrossRef Mohammad K, Saheb N (2016) Molecular level mixing: an approach for synthesis of homogenous hybrid ceramic nanocomposite powders. Powder Technol 291:121–130CrossRef
18.
Zurück zum Zitat Bocanegra-Bernal MH, Dominguez-Rios C, Echeberria J, Reyes-Rojas A, Garcia-Reyes A, Aguilar-Elguezabal A (2016) Spark plasma sintering of multi-, single/double- and single-walled carbon nanotube-reinforced alumina composites: Is it justifiable the effort to reinforce them? Ceram Int 42(1, Part B):2054–2062CrossRef Bocanegra-Bernal MH, Dominguez-Rios C, Echeberria J, Reyes-Rojas A, Garcia-Reyes A, Aguilar-Elguezabal A (2016) Spark plasma sintering of multi-, single/double- and single-walled carbon nanotube-reinforced alumina composites: Is it justifiable the effort to reinforce them? Ceram Int 42(1, Part B):2054–2062CrossRef
19.
Zurück zum Zitat Rul S, Lefevre-schlick F, Capria E, Laurent Ch, Peigney A (2003) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52:1061–1067CrossRef Rul S, Lefevre-schlick F, Capria E, Laurent Ch, Peigney A (2003) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52:1061–1067CrossRef
20.
Zurück zum Zitat Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17:1770–1777CrossRef Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17:1770–1777CrossRef
21.
Zurück zum Zitat Li Q, Dong L, Fang J, Xiong C (2010) Property–structure relationship of nanoscale ionic materials based on multiwalled carbon nanotubes. ACS Nano 4(10):5797–5806CrossRef Li Q, Dong L, Fang J, Xiong C (2010) Property–structure relationship of nanoscale ionic materials based on multiwalled carbon nanotubes. ACS Nano 4(10):5797–5806CrossRef
22.
Zurück zum Zitat Liu L, Wang Y, Li X, Xu L, Cao X, Wang Y, Wang Z, Meng C, Zhu W, Ouyang X, Sglavo V (2016) Enhancing toughness in boron carbide with reduced graphene oxide. J Am Ceram Soc 99(1):257–264CrossRef Liu L, Wang Y, Li X, Xu L, Cao X, Wang Y, Wang Z, Meng C, Zhu W, Ouyang X, Sglavo V (2016) Enhancing toughness in boron carbide with reduced graphene oxide. J Am Ceram Soc 99(1):257–264CrossRef
23.
Zurück zum Zitat Sedlák R, Kovalčíková A, Múdra E, Rutkowski P, Dubiel A, Girman V, Bystrický R, Dusza J (2017) Boron carbide/graphene platelet ceramics with improved fracture toughness and electrical conductivity. J Eur Ceram Soc 37(12):3773–3780CrossRef Sedlák R, Kovalčíková A, Múdra E, Rutkowski P, Dubiel A, Girman V, Bystrický R, Dusza J (2017) Boron carbide/graphene platelet ceramics with improved fracture toughness and electrical conductivity. J Eur Ceram Soc 37(12):3773–3780CrossRef
24.
Zurück zum Zitat Stobinski L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, Judek J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd 501(1):77–84CrossRef Stobinski L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, Judek J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd 501(1):77–84CrossRef
25.
Zurück zum Zitat Kuila BK, Park K, Dai L (2010) Soluble P3HT-grafted carbon nanotubes: synthesis and photovoltaic application. Macromolecules 43(16):6699–6705CrossRef Kuila BK, Park K, Dai L (2010) Soluble P3HT-grafted carbon nanotubes: synthesis and photovoltaic application. Macromolecules 43(16):6699–6705CrossRef
26.
Zurück zum Zitat Wang FF, Li N, Tian D, Xia GF, Xiao N (2010) Efficient synthesis of fullerenol in anion form for the preparation of electrodeposited films. ACS Nano 4(10):5565–5572CrossRef Wang FF, Li N, Tian D, Xia GF, Xiao N (2010) Efficient synthesis of fullerenol in anion form for the preparation of electrodeposited films. ACS Nano 4(10):5565–5572CrossRef
27.
Zurück zum Zitat Vartapetyan RS, Voloshchuk A, Shumilina E (1993) The critical size of clusters of water molecules on a carbon surface. Russ Chem Bull 42(1):46–48CrossRef Vartapetyan RS, Voloshchuk A, Shumilina E (1993) The critical size of clusters of water molecules on a carbon surface. Russ Chem Bull 42(1):46–48CrossRef
28.
Zurück zum Zitat Fan J, Zhao D, Wu M, Xu Z, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89(2):750–753CrossRef Fan J, Zhao D, Wu M, Xu Z, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89(2):750–753CrossRef
29.
Zurück zum Zitat Kovalčíková A, Balázsi C, Dusza J, Tapasztó O (2012) Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite. Ceram Int 38(1):527–533CrossRef Kovalčíková A, Balázsi C, Dusza J, Tapasztó O (2012) Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite. Ceram Int 38(1):527–533CrossRef
30.
Zurück zum Zitat Kang S-Z, D-e Yin, Li X, Mu J (2011) A facile preparation of multiwalled carbon nanotubes modified with hydroxyl groups and their high dispersibility in ethanol. Colloid Surface A 384(1–3):363–367CrossRef Kang S-Z, D-e Yin, Li X, Mu J (2011) A facile preparation of multiwalled carbon nanotubes modified with hydroxyl groups and their high dispersibility in ethanol. Colloid Surface A 384(1–3):363–367CrossRef
31.
Zurück zum Zitat Chen Y, Feng Y, Wang Y, Mo F, Qian G, Yu D, Liu W, Zhang X (2017) Well-dispersed carbon nanotubes for greatly enhanced mechanical properties of alumina-based composites. Refract Ind Ceram 58(2):188–193CrossRef Chen Y, Feng Y, Wang Y, Mo F, Qian G, Yu D, Liu W, Zhang X (2017) Well-dispersed carbon nanotubes for greatly enhanced mechanical properties of alumina-based composites. Refract Ind Ceram 58(2):188–193CrossRef
32.
Zurück zum Zitat Zhang X, Zhang Z, Wen R, Wang G, Zhang X, Mu J, Che H, Wang W (2018) Comparisons of the densification, microstructure and mechanical properties of boron carbide sintered by hot pressing and spark plasma sintering. Ceram Int 44(2):2615–2619CrossRef Zhang X, Zhang Z, Wen R, Wang G, Zhang X, Mu J, Che H, Wang W (2018) Comparisons of the densification, microstructure and mechanical properties of boron carbide sintered by hot pressing and spark plasma sintering. Ceram Int 44(2):2615–2619CrossRef
33.
Zurück zum Zitat Ghobadi H, Ebadzadeh T, Sadeghian Z, Barzegar-Bafrooei H, Nemati A (2017) Microwave-assisted sintering of Al2O3-MWCNT nanocomposites. Ceram Int 43(8):6105–6109CrossRef Ghobadi H, Ebadzadeh T, Sadeghian Z, Barzegar-Bafrooei H, Nemati A (2017) Microwave-assisted sintering of Al2O3-MWCNT nanocomposites. Ceram Int 43(8):6105–6109CrossRef
34.
Zurück zum Zitat Zhan G-D, Kuntz JD, Garay JE, Mukherjee AK (2003) Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl Phys Lett 83(6):1228–1230CrossRef Zhan G-D, Kuntz JD, Garay JE, Mukherjee AK (2003) Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl Phys Lett 83(6):1228–1230CrossRef
Metadaten
Titel
Multi-walled carbon nanotube-reinforced boron carbide matrix composites fabricated via ultra-high-pressure sintering
verfasst von
Bing Wang
Yuan Wang
Yun Zhou
Fugang Qi
Qiujie Ding
Junyu Li
Xiaoping OuYang
Lixin Liu
Publikationsdatum
16.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03677-4

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.