Skip to main content
Top
Published in: Journal of Scientific Computing 2/2016

03-05-2016

Symmetric Energy-Conserved S-FDTD Scheme for Two-Dimensional Maxwell’s Equations in Negative Index Metamaterials

Authors: Wanshan Li, Dong Liang

Published in: Journal of Scientific Computing | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new time second-order symmetric energy-conserved splitting FDTD scheme is proposed for solving the two-dimensional Maxwell’s equations in negative index metamaterials with Drude model. The scheme is proved to preserve the discrete electromagnetic energies in metamaterials and is of second order accuracy both in time and space. The proposed scheme also possesses the superconvergence and the second-order convergence for the discrete divergence. Numerical experiments confirm the theoretical results. Simulations of CW Gaussian beam interactions with double negative matematerials slabs and the electromagnetic waves propagating in metamaterials excited by sinusoidal point source are carried out to show supernormal phenomena in negative index metamaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Bilotti, F., Sevgi, L.: Metamaterials: definitions, properties, applications, and fdtd-based modeling and simulation. Int. J. RF Microw. C. E. 22, 422–438 (2012)CrossRef Bilotti, F., Sevgi, L.: Metamaterials: definitions, properties, applications, and fdtd-based modeling and simulation. Int. J. RF Microw. C. E. 22, 422–438 (2012)CrossRef
3.
go back to reference Cevini, G., Oliveri, G., Raffetto, M.: Further comments on the performances of finite element simulators for the solution of electromagnetic problems involving metamaterials. Microw. Opt. Technol. Lett. 48, 2524–2529 (2006)CrossRef Cevini, G., Oliveri, G., Raffetto, M.: Further comments on the performances of finite element simulators for the solution of electromagnetic problems involving metamaterials. Microw. Opt. Technol. Lett. 48, 2524–2529 (2006)CrossRef
4.
5.
go back to reference Chen, W., Li, X., Liang, D.: Symmetric energy-conserved splitting fdtd scheme for the maxwell’s equations. Commun. Comput. Phys. 6, 804–825 (2009)MathSciNetCrossRef Chen, W., Li, X., Liang, D.: Symmetric energy-conserved splitting fdtd scheme for the maxwell’s equations. Commun. Comput. Phys. 6, 804–825 (2009)MathSciNetCrossRef
6.
go back to reference Correia, D., Jin, J.: Theoretical analysis of left-handed metamaterials using fdtd-pml method. In: Proceedings of the 2003 SBMO/IEEE MTT-S International, vol. 2, pp. 1033–1036 (2003) Correia, D., Jin, J.: Theoretical analysis of left-handed metamaterials using fdtd-pml method. In: Proceedings of the 2003 SBMO/IEEE MTT-S International, vol. 2, pp. 1033–1036 (2003)
7.
go back to reference Correia, D., Jin, J.: 3d-fdtd-pml analysis of left-handed metamaterials. Microw. Opt. Technol. Lett. 40, 201–205 (2004)CrossRef Correia, D., Jin, J.: 3d-fdtd-pml analysis of left-handed metamaterials. Microw. Opt. Technol. Lett. 40, 201–205 (2004)CrossRef
8.
go back to reference Engheta, N., Ziolkowski, R.: A positive future for double-negative metamaterials. IEEE T. Microw. Theor. Y. 53, 1535–1556 (2005)CrossRef Engheta, N., Ziolkowski, R.: A positive future for double-negative metamaterials. IEEE T. Microw. Theor. Y. 53, 1535–1556 (2005)CrossRef
9.
go back to reference Engheta, N., Ziolkowski, R.: In Metamaterials: Physics and Engineering Explorations. Wiley, New York (2006)CrossRef Engheta, N., Ziolkowski, R.: In Metamaterials: Physics and Engineering Explorations. Wiley, New York (2006)CrossRef
10.
11.
go back to reference Gao, L., Zhang, B., Liang, D.: The splitting finite-difference time-domain methods for maxwell’s equations in two dimensions. J. Comput. Appl. Math. 205, 207–230 (2007)MathSciNetCrossRefMATH Gao, L., Zhang, B., Liang, D.: The splitting finite-difference time-domain methods for maxwell’s equations in two dimensions. J. Comput. Appl. Math. 205, 207–230 (2007)MathSciNetCrossRefMATH
12.
go back to reference Goswami, C., Mukherjee, S., Karmakar, S., Pal, M., Ghatak, R.: Fdtd modeling of lorentzian dng metamaterials by auxiliary differential equation method. J. Electromagn. Anal. Appl. 6, 106–114 (2014) Goswami, C., Mukherjee, S., Karmakar, S., Pal, M., Ghatak, R.: Fdtd modeling of lorentzian dng metamaterials by auxiliary differential equation method. J. Electromagn. Anal. Appl. 6, 106–114 (2014)
13.
go back to reference Holden, A.: Towards some real applications for negative materials. Photonic Nanostruct. Fundam. Appl. 3, 96–99 (2005)CrossRef Holden, A.: Towards some real applications for negative materials. Photonic Nanostruct. Fundam. Appl. 3, 96–99 (2005)CrossRef
14.
go back to reference Huang, Y., Li, J.: Superconvergence of mixed finite element approximations to 3-d maxwell’s equations in metamaterials. J. Comput. Phys. 230, 8275–8289 (2011)MathSciNetCrossRefMATH Huang, Y., Li, J.: Superconvergence of mixed finite element approximations to 3-d maxwell’s equations in metamaterials. J. Comput. Phys. 230, 8275–8289 (2011)MathSciNetCrossRefMATH
15.
go back to reference Joannopoulos, J., Meade, R., Winn, J.: Photonic crystals: modeling the flow of light. Princeton University Press, Princeton (1995)MATH Joannopoulos, J., Meade, R., Winn, J.: Photonic crystals: modeling the flow of light. Princeton University Press, Princeton (1995)MATH
16.
go back to reference Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Superprism phenomena in photonic crystals. Phys. Rev. B 58, R10096–R10099 (1998)CrossRef Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Superprism phenomena in photonic crystals. Phys. Rev. B 58, R10096–R10099 (1998)CrossRef
17.
go back to reference Li, J., Shaw, S.: Schemes and estimates for the long-time numerical solution of maxwell’s equations for lorentz metamaterials. Int. J. Numer. Anal. Mod. 12, 343–365 (2015)MathSciNetMATH Li, J., Shaw, S.: Schemes and estimates for the long-time numerical solution of maxwell’s equations for lorentz metamaterials. Int. J. Numer. Anal. Mod. 12, 343–365 (2015)MathSciNetMATH
18.
go back to reference Li, J., Wood, A.: Finite element analysis for wave propagation in double negative metamaterials. J. Sci. Comput. 32, 263–286 (2007)MathSciNetCrossRefMATH Li, J., Wood, A.: Finite element analysis for wave propagation in double negative metamaterials. J. Sci. Comput. 32, 263–286 (2007)MathSciNetCrossRefMATH
19.
go back to reference Li, W., Liang, D., Lin, Y.: A new energy-conserved s-fdtd scheme for maxwell’s equations in metamaterials. Int. J. Numer. Anal. Mod. 10, 775–794 (2013)MathSciNetMATH Li, W., Liang, D., Lin, Y.: A new energy-conserved s-fdtd scheme for maxwell’s equations in metamaterials. Int. J. Numer. Anal. Mod. 10, 775–794 (2013)MathSciNetMATH
20.
go back to reference Martin, F., Toscano, A.: Guest editorial for special issue on metamaterials and special materials for electromagnetic applications and telecommunications. Microw. Opt. Technol. Lett. 48, 2481–2482 (2006)CrossRef Martin, F., Toscano, A.: Guest editorial for special issue on metamaterials and special materials for electromagnetic applications and telecommunications. Microw. Opt. Technol. Lett. 48, 2481–2482 (2006)CrossRef
21.
go back to reference Namiki, T.: A new fdtd algorithm based on alternating-direction implicit method. IEEE T. Microw. Theor. Y. 47, 2003–2007 (1999)CrossRef Namiki, T.: A new fdtd algorithm based on alternating-direction implicit method. IEEE T. Microw. Theor. Y. 47, 2003–2007 (1999)CrossRef
22.
go back to reference Nascimento, V., Jung, K., Borges, B., Teixeira, F.: A study on unconditionally stabel fdtd methods for the modeling of metamaterials. J. Lightwave Technol. 27, 4241–4249 (2009)CrossRef Nascimento, V., Jung, K., Borges, B., Teixeira, F.: A study on unconditionally stabel fdtd methods for the modeling of metamaterials. J. Lightwave Technol. 27, 4241–4249 (2009)CrossRef
23.
go back to reference Pendry, J.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRef Pendry, J.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRef
24.
go back to reference Shelby, A., Smith, D., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRef Shelby, A., Smith, D., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRef
25.
go back to reference Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRef Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRef
26.
go back to reference Taflove, A., Brodwin, M.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwells equations. IEEE T. Microw. Theor. Y. 23, 623–630 (1975)CrossRef Taflove, A., Brodwin, M.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwells equations. IEEE T. Microw. Theor. Y. 23, 623–630 (1975)CrossRef
27.
go back to reference Taflove, A., Hagness, S.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston (2000)MATH Taflove, A., Hagness, S.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston (2000)MATH
28.
go back to reference Veselago, V.: The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 47, 509–514 (1968)CrossRef Veselago, V.: The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 47, 509–514 (1968)CrossRef
29.
go back to reference Wang, M., Wu, J., Xu, J., Ge, D., Li, H., Feng, J.: Fdtd simulation on the interaction between gaussian beam and biaxial anisotropic metamaterial slabs. Int. J. Infrared Millim. 29, 167–178 (2008)CrossRef Wang, M., Wu, J., Xu, J., Ge, D., Li, H., Feng, J.: Fdtd simulation on the interaction between gaussian beam and biaxial anisotropic metamaterial slabs. Int. J. Infrared Millim. 29, 167–178 (2008)CrossRef
30.
go back to reference Yang, H., Song, H.: Symplectic fdtd method study left-handed material electromagnetic characteristics. Optik 124, 1716–1720 (2013)CrossRef Yang, H., Song, H.: Symplectic fdtd method study left-handed material electromagnetic characteristics. Optik 124, 1716–1720 (2013)CrossRef
31.
go back to reference Yee, K.: Numerical solution of initial boundary vallue problems involving maxwell’s equations in isotropic media. IEEE T. Antenn. Propa. G. 14, 302–307 (1966)CrossRefMATH Yee, K.: Numerical solution of initial boundary vallue problems involving maxwell’s equations in isotropic media. IEEE T. Antenn. Propa. G. 14, 302–307 (1966)CrossRefMATH
32.
go back to reference Zheng, F., Chen, Z., Zhang, J.: Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE T. Microw. Theor. Y. 48, 1550–1558 (2000)CrossRef Zheng, F., Chen, Z., Zhang, J.: Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE T. Microw. Theor. Y. 48, 1550–1558 (2000)CrossRef
33.
go back to reference Ziolkowski, R.: Design, fabrication, and testing of double negative metamaterials. IEEE Antenna Propag. 51, 1516 (2003)CrossRef Ziolkowski, R.: Design, fabrication, and testing of double negative metamaterials. IEEE Antenna Propag. 51, 1516 (2003)CrossRef
34.
go back to reference Ziolkowski, R.: Pulsed and cw gaussian beam interactions with double negative metamaterial slabs. Opt. Express 11, 662–681 (2003)CrossRef Ziolkowski, R.: Pulsed and cw gaussian beam interactions with double negative metamaterial slabs. Opt. Express 11, 662–681 (2003)CrossRef
35.
go back to reference Ziolkowski, R.: Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004)CrossRef Ziolkowski, R.: Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004)CrossRef
36.
go back to reference Ziolkowski, R., Heyman, E.: Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001)CrossRef Ziolkowski, R., Heyman, E.: Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001)CrossRef
Metadata
Title
Symmetric Energy-Conserved S-FDTD Scheme for Two-Dimensional Maxwell’s Equations in Negative Index Metamaterials
Authors
Wanshan Li
Dong Liang
Publication date
03-05-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0214-9

Other articles of this Issue 2/2016

Journal of Scientific Computing 2/2016 Go to the issue

Premium Partner