Skip to main content
Top
Published in: Cognitive Computation 1/2024

05-09-2023

TEGAN: Transformer Embedded Generative Adversarial Network for Underwater Image Enhancement

Authors: Zhi Gao, Jing Yang, Lu Zhang, Fengling Jiang, Xixiang Jiao

Published in: Cognitive Computation | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Underwater robots are widely used in underwater missions. However, due to complex scenes, it is difficult to obtain high-quality underwater images, which usually suffer from severe distortions such as low visibility, blurred edges, and color cast. In this paper, a Transformer embedded generative adversarial network for underwater image enhancement is presented. We propose a window-based dual local enhancement block to compensate for the Transformer’s shortcomings in extracting local features and improving image clarity. Convolutional neural network is deployed in sequential and parallel modes for local enhancement. Second, for generator construction, a fusion scheme combining convolutional neural network and Transformer block in units is designed. We exploit a self-attention mechanism to extract long-distance dependencies and fully extract the original features at the initial stage to enhance the image details. Meanwhile, global information is captured through the bottleneck for color correction. Convolutional neural network, which is good at extracting local features, is introduced in Encoder/Decoder units for multiscale feature extraction and reconstruction to effectively reduce edge blurring. Finally, a Transformer embedded generative adversarial network with a two-branch discriminator is established to generate more realistic colors while preserving the image content. Comparative experimental results show that our method can achieve superior results to the state-of-the-art approaches on both paired and unpaired datasets. Excellent learning and generalization ability make it outperform others in subjective perception and overall performance evaluated by image quality metrics. In addition, the enhancement results also show the significant improvement it brings in the downstream visual application tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bingham B, Foley B, Singh H, Camilli R, Delaporta K, Eustice R, et al. Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J Field Robot. 2010;27(6):702–17.CrossRef Bingham B, Foley B, Singh H, Camilli R, Delaporta K, Eustice R, et al. Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J Field Robot. 2010;27(6):702–17.CrossRef
2.
go back to reference Shkurti F, Xu A, Meghjani M, Higuera J C G, Girdhar Y, Giguere P, et al. Multi-domain monitoring of marine environments using a heterogeneous robot team. IEEE/RSJ Int Conf Intell Robots Syst. 2012. p. 1747–1753. Shkurti F, Xu A, Meghjani M, Higuera J C G, Girdhar Y, Giguere P, et al. Multi-domain monitoring of marine environments using a heterogeneous robot team. IEEE/RSJ Int Conf Intell Robots Syst. 2012. p. 1747–1753.
3.
go back to reference Wu J, Song C, Ma J, Wu J, Han G. Reinforcement learning and particle swarm optimization supporting real-time rescue assignments for multiple autonomous underwater vehicles. IEEE Trans Intell Transp Syst. 2021;23(7):6807–20.CrossRef Wu J, Song C, Ma J, Wu J, Han G. Reinforcement learning and particle swarm optimization supporting real-time rescue assignments for multiple autonomous underwater vehicles. IEEE Trans Intell Transp Syst. 2021;23(7):6807–20.CrossRef
4.
go back to reference Ancuti C, Ancuti C O, Haber T, Bekaert P. (2012, June). Enhancing underwater images and videos by fusion. In: 2012 IEEE Conf Comput Vis Pattern Recognit (CVPR). 2012. p. 81–88. Ancuti C, Ancuti C O, Haber T, Bekaert P. (2012, June). Enhancing underwater images and videos by fusion. In: 2012 IEEE Conf Comput Vis Pattern Recognit (CVPR). 2012. p. 81–88.
5.
go back to reference Ancuti CO, Ancuti C, Vleeschouwer CD, Bekaert P. Color balance and fusion for underwater image enhancement. IEEE Trans Image Process. 2018;27(6):379–93.MathSciNetCrossRef Ancuti CO, Ancuti C, Vleeschouwer CD, Bekaert P. Color balance and fusion for underwater image enhancement. IEEE Trans Image Process. 2018;27(6):379–93.MathSciNetCrossRef
6.
go back to reference Iqbal K, Salam R A, Osman A M, Talib A Z. Underwater image enhancement using an integrated colour model. IAENG Int J Comput Sci. 2007;34(2). Iqbal K, Salam R A, Osman A M, Talib A Z. Underwater image enhancement using an integrated colour model. IAENG Int J Comput Sci. 2007;34(2).
7.
go back to reference Babakhani P, Zarei P. Automatic gamma correction based on average of brightness. Adv Comput Sci : Int J. 2015;4(6):156–9. Babakhani P, Zarei P. Automatic gamma correction based on average of brightness. Adv Comput Sci : Int J. 2015;4(6):156–9.
8.
go back to reference Zhou J, Wei X, Shi J, Chu W, Zhang W. Underwater image enhancement method with light scattering characteristics. Comput Electr Eng. 2022;100: 107898.CrossRef Zhou J, Wei X, Shi J, Chu W, Zhang W. Underwater image enhancement method with light scattering characteristics. Comput Electr Eng. 2022;100: 107898.CrossRef
9.
go back to reference Carlevaris-Bianco N, Mohan A, Eustice R M. Initial results in underwater single image dehazing. In: Oceans 2010 MTS/IEEE Seattle. 2010. p. 1–8. Carlevaris-Bianco N, Mohan A, Eustice R M. Initial results in underwater single image dehazing. In: Oceans 2010 MTS/IEEE Seattle. 2010. p. 1–8.
10.
go back to reference He K, Sun J, Tang X. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell. 2010;33(12):2341–53. He K, Sun J, Tang X. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell. 2010;33(12):2341–53.
11.
go back to reference Drews P, Nascimento E, Moraes F, Botelho S, Campos M. Transmission estimation in underwater single images. In: Proceedings of the IEEE Int Conf Comput Vis Workshops. 2013. p. 825–830. Drews P, Nascimento E, Moraes F, Botelho S, Campos M. Transmission estimation in underwater single images. In: Proceedings of the IEEE Int Conf Comput Vis Workshops. 2013. p. 825–830.
12.
go back to reference Peng YT, Cosman PC. Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process. 2017;26(4):1579–94.MathSciNetCrossRef Peng YT, Cosman PC. Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process. 2017;26(4):1579–94.MathSciNetCrossRef
13.
go back to reference Chao L, Wang M. Removal of water scattering. In: 2010 2nd Int Conf Comput Eng Technol. 2010. p. V2–35-V2–39. Chao L, Wang M. Removal of water scattering. In: 2010 2nd Int Conf Comput Eng Technol. 2010. p. V2–35-V2–39.
14.
go back to reference Song W, Wang Y, Huang D, Tjondronegoro D. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. In: Advances in Multimedia Information Processing-PCM 2018: 19th Pacific-Rim Conference on Multimedia. 2018. p. 678–688. Song W, Wang Y, Huang D, Tjondronegoro D. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. In: Advances in Multimedia Information Processing-PCM 2018: 19th Pacific-Rim Conference on Multimedia. 2018. p. 678–688.
15.
go back to reference Gong K, Hua D. Research on the method of color compensation and underwater image restoration based on polarization characteristics. In: 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). 2022. p. 746–751. Gong K, Hua D. Research on the method of color compensation and underwater image restoration based on polarization characteristics. In: 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). 2022. p. 746–751.
16.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Neural Inf Process Syst. 2014. p. 2672–2680. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Neural Inf Process Syst. 2014. p. 2672–2680.
17.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017. 30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017. 30.
18.
go back to reference Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE Int Conf Comput Vis. 2017. p. 2223–2232. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE Int Conf Comput Vis. 2017. p. 2223–2232.
19.
go back to reference Jiang X, Zhu Y, Cai G, Zheng B, Yang D. MXT: a new variant of pyramid vision transformer for multi-label chest X-ray image classification. Cogn Comput. 2022;14(4):1362–77.CrossRef Jiang X, Zhu Y, Cai G, Zheng B, Yang D. MXT: a new variant of pyramid vision transformer for multi-label chest X-ray image classification. Cogn Comput. 2022;14(4):1362–77.CrossRef
20.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th Int Conf. 2015. p. 234–241. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th Int Conf. 2015. p. 234–241.
21.
go back to reference Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. Improved training of Wasserstein GANs. Adv Neural Inf Process Syst. 2017;2017:30. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. Improved training of Wasserstein GANs. Adv Neural Inf Process Syst. 2017;2017:30.
22.
go back to reference Chen X, Yu J, Kong S, Wu Z, Fang X, Wen L. Towards real-time advancement of underwater visual quality with GAN. IEEE Trans Industr Electron. 2019;66(12):9350–9.CrossRef Chen X, Yu J, Kong S, Wu Z, Fang X, Wen L. Towards real-time advancement of underwater visual quality with GAN. IEEE Trans Industr Electron. 2019;66(12):9350–9.CrossRef
23.
go back to reference Wang Z, Cun X, Bao J, Zhou W, Liu J, Li H. Uformer: a general U-shaped transformer for image restoration. In: 2022 IEEE/CVF Conf Comput Vis Pattern Recog (CVPR). 2022. p. 17662–17672. Wang Z, Cun X, Bao J, Zhou W, Liu J, Li H. Uformer: a general U-shaped transformer for image restoration. In: 2022 IEEE/CVF Conf Comput Vis Pattern Recog (CVPR). 2022. p. 17662–17672.
24.
go back to reference Islam MJ, Xia Y, Sattar J. Fast underwater image enhancement for improved visual perception. IEEE Robot Autom Lett. 2020;5(2):3227–34.CrossRef Islam MJ, Xia Y, Sattar J. Fast underwater image enhancement for improved visual perception. IEEE Robot Autom Lett. 2020;5(2):3227–34.CrossRef
25.
go back to reference Liu R, Fan X, Zhu M, Hou M, Luo Z. Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light. IEEE Trans Circuits Syst Video Technol. 2020;30(12):4861–75.CrossRef Liu R, Fan X, Zhu M, Hou M, Luo Z. Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light. IEEE Trans Circuits Syst Video Technol. 2020;30(12):4861–75.CrossRef
26.
go back to reference Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, et al. An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process. 2019;29:4376–89.CrossRef Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, et al. An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process. 2019;29:4376–89.CrossRef
27.
go back to reference Li C, Anwar S, Porikli F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 2020;98: 107038.CrossRef Li C, Anwar S, Porikli F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 2020;98: 107038.CrossRef
28.
go back to reference Wang D, Ma L, Liu R, Fan X. Semantic-aware texture-structure feature collaboration for underwater image enhancement. In: 2022 Int Conf Robot Autom (ICRA). 2022. p. 4592–4598. Wang D, Ma L, Liu R, Fan X. Semantic-aware texture-structure feature collaboration for underwater image enhancement. In: 2022 Int Conf Robot Autom (ICRA). 2022. p. 4592–4598.
29.
go back to reference Fu Z, Lin X, Wang W, Huang Y, Ding X. Underwater image enhancement via learning water type desensitized representations. In: ICASSP 2022–2022 IEEE Int Conf Acoust, Speech Signal Process (ICASSP). 2022. p. 2764–2768. Fu Z, Lin X, Wang W, Huang Y, Ding X. Underwater image enhancement via learning water type desensitized representations. In: ICASSP 2022–2022 IEEE Int Conf Acoust, Speech Signal Process (ICASSP). 2022. p. 2764–2768.
30.
go back to reference Liu R, Jiang Z, Yang S, Fan X. Twin adversarial contrastive learning for underwater image enhancement and beyond. IEEE Trans Image Process. 2022;31:4922–36.CrossRef Liu R, Jiang Z, Yang S, Fan X. Twin adversarial contrastive learning for underwater image enhancement and beyond. IEEE Trans Image Process. 2022;31:4922–36.CrossRef
31.
go back to reference Liu X, Gao Z, Chen BM. MLFcGAN: multilevel feature fusion-based conditional GAN for underwater image color correction. IEEE Geosci Remote Sens Lett. 2020;17(9):1488–92.CrossRef Liu X, Gao Z, Chen BM. MLFcGAN: multilevel feature fusion-based conditional GAN for underwater image color correction. IEEE Geosci Remote Sens Lett. 2020;17(9):1488–92.CrossRef
33.
go back to reference Wu K, Peng H, Chen M, Fu J, Chao H. Rethinking and improving relative position encoding for vision transformer. 2021 IEEE/CVF Int Conf Comput Vis (ICCV). 2021. p. 10033–10041. Wu K, Peng H, Chen M, Fu J, Chao H. Rethinking and improving relative position encoding for vision transformer. 2021 IEEE/CVF Int Conf Comput Vis (ICCV). 2021. p. 10033–10041.
34.
go back to reference Isola P, Zhu J Y, Zhou T, Efros A A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conf Comput Vis Pattern Recognit. 2017. p. 1125–1134. Isola P, Zhu J Y, Zhou T, Efros A A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conf Comput Vis Pattern Recognit. 2017. p. 1125–1134.
36.
go back to reference Han R, Guan Y, Yu Z, Liu P, Zheng H. Underwater image enhancement based on a spiral generative adversarial framework. IEEE Access. 2020;8:218838–52.CrossRef Han R, Guan Y, Yu Z, Liu P, Zheng H. Underwater image enhancement based on a spiral generative adversarial framework. IEEE Access. 2020;8:218838–52.CrossRef
37.
go back to reference Fabbri C, Islam M J, Sattar J. Enhancing underwater imagery using generative adversarial networks. 2018 IEEE Int Conf Robot Autom (ICRA). 2018. p. 7159–7165. Fabbri C, Islam M J, Sattar J. Enhancing underwater imagery using generative adversarial networks. 2018 IEEE Int Conf Robot Autom (ICRA). 2018. p. 7159–7165.
38.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRef
39.
go back to reference Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures. IEEE J Oceanic Eng. 2015;41(3):541–51.CrossRef Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures. IEEE J Oceanic Eng. 2015;41(3):541–51.CrossRef
40.
go back to reference Yang M, Sowmya A. An underwater color image quality evaluation metric. IEEE Trans Image Process. 2015;24(12):6062–71.MathSciNetCrossRef Yang M, Sowmya A. An underwater color image quality evaluation metric. IEEE Trans Image Process. 2015;24(12):6062–71.MathSciNetCrossRef
41.
go back to reference Mittal A, Soundararajan R, Bovik AC. Making a “completely blind” image quality analyzer. IEEE Signal Process Lett. 2013;20(3):209–12.CrossRef Mittal A, Soundararajan R, Bovik AC. Making a “completely blind” image quality analyzer. IEEE Signal Process Lett. 2013;20(3):209–12.CrossRef
42.
go back to reference Mittal A, Moorthy AK, Bovik AC. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process. 2012;21(12):4695–708.MathSciNetCrossRef Mittal A, Moorthy AK, Bovik AC. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process. 2012;21(12):4695–708.MathSciNetCrossRef
44.
go back to reference Gu YS, Jiang QP, Shao F, Gao W. A real-world quality evaluation dataset for enhanced underwater images. J Image Graph. 2022;27(05):1467–80. Gu YS, Jiang QP, Shao F, Gao W. A real-world quality evaluation dataset for enhanced underwater images. J Image Graph. 2022;27(05):1467–80.
45.
go back to reference Islam M J, Edge C, Xiao Y, Luo P, Mehtaz M, Morse C, et al. Semantic segmentation of underwater imagery: dataset and benchmark. IEEE/RSJ Int Conf Intell Robot Syst. 2020, pp. 1769–1776. Islam M J, Edge C, Xiao Y, Luo P, Mehtaz M, Morse C, et al. Semantic segmentation of underwater imagery: dataset and benchmark. IEEE/RSJ Int Conf Intell Robot Syst. 2020, pp. 1769–1776.
46.
go back to reference Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vision. 2004;60:91–110.CrossRef Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vision. 2004;60:91–110.CrossRef
47.
go back to reference Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;6:679–98.CrossRef Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;6:679–98.CrossRef
Metadata
Title
TEGAN: Transformer Embedded Generative Adversarial Network for Underwater Image Enhancement
Authors
Zhi Gao
Jing Yang
Lu Zhang
Fengling Jiang
Xixiang Jiao
Publication date
05-09-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 1/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10197-6

Other articles of this Issue 1/2024

Cognitive Computation 1/2024 Go to the issue

Premium Partner