Skip to main content
Top
Published in: Quantum Information Processing 6/2020

01-06-2020

The construction of 7-qubit unextendible product bases of size ten

Published in: Quantum Information Processing | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The construction of multiqubit unextendible product bases (UPBs) is an important problem in quantum information. We construct a 7-qubit UPB of size 10 by studying the unextendible orthogonal matrices. We apply our result to construct an 8-qubit UPB of size 18. Our results solve an open problem proposed in (J Phys A 51:265302, 2018). We also investigate the properties of general 7-qubit UPBs of size 10.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379–410 (2003)ADSMathSciNetCrossRef DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379–410 (2003)ADSMathSciNetCrossRef
3.
go back to reference Chen, J., Johnston, N.: The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Commun. Math. Phys. 333(1), 351–365 (2013)ADSMathSciNetCrossRef Chen, J., Johnston, N.: The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Commun. Math. Phys. 333(1), 351–365 (2013)ADSMathSciNetCrossRef
4.
go back to reference Tura, J., Augusiak, R., Hyllus, P., Kuś, M., Samsonowicz, J., Lewenstein, M.: Four-qubit entangled symmetric states with positive partial transpositions. Phys. Rev. A 85(6), 060302 (2012)ADSCrossRef Tura, J., Augusiak, R., Hyllus, P., Kuś, M., Samsonowicz, J., Lewenstein, M.: Four-qubit entangled symmetric states with positive partial transpositions. Phys. Rev. A 85(6), 060302 (2012)ADSCrossRef
6.
go back to reference Augusiak, R., Fritz, T., Kotowski, M., Kotowski, M., Lewenstein, M., Acín, A.: Tight bell inequalities with no quantum violation from qubit unextendible product bases. Phys. Rev. A 85(4), 4233–4237 (2012)CrossRef Augusiak, R., Fritz, T., Kotowski, M., Kotowski, M., Lewenstein, M., Acín, A.: Tight bell inequalities with no quantum violation from qubit unextendible product bases. Phys. Rev. A 85(4), 4233–4237 (2012)CrossRef
7.
go back to reference Duan, R., Xin, Y., Ying, M.: Locally indistinguishable subspaces spanned by three-qubit unextendible product bases. Phys. Rev. A 81, 032329 (2010)ADSCrossRef Duan, R., Xin, Y., Ying, M.: Locally indistinguishable subspaces spanned by three-qubit unextendible product bases. Phys. Rev. A 81, 032329 (2010)ADSCrossRef
8.
go back to reference Zhang, Z.C., Wu, X., Zhang, X.: Locally distinguish unextendible product bases by efficiently using entanglement resource (2019) Zhang, Z.C., Wu, X., Zhang, X.: Locally distinguish unextendible product bases by efficiently using entanglement resource (2019)
9.
go back to reference Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)ADSCrossRef Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)ADSCrossRef
10.
go back to reference Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Optimal spin squeezing inequalities detect bound entanglement in spin models. Phys. Rev. Lett. 99, 250405 (2007)ADSCrossRef Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Optimal spin squeezing inequalities detect bound entanglement in spin models. Phys. Rev. Lett. 99, 250405 (2007)ADSCrossRef
11.
go back to reference Chen, L., Friedland, S.: The tensor rank of tensor product of two three-qubit w states is eight. Linear Algebra Appl. 543, 1–16 (2018)MathSciNetCrossRef Chen, L., Friedland, S.: The tensor rank of tensor product of two three-qubit w states is eight. Linear Algebra Appl. 543, 1–16 (2018)MathSciNetCrossRef
12.
go back to reference Leonid, G.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement (2003) Leonid, G.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement (2003)
13.
go back to reference Monteiro, F., Vivoli, V.C., Guerreiro, T., Martin, A., Bancal, J.D., Zbinden, H., Thew, R.T., Sangouard, N.: Revealing genuine optical-path entanglement. Phys. Rev. Lett. 114(17), 170504 (2015)ADSCrossRef Monteiro, F., Vivoli, V.C., Guerreiro, T., Martin, A., Bancal, J.D., Zbinden, H., Thew, R.T., Sangouard, N.: Revealing genuine optical-path entanglement. Phys. Rev. Lett. 114(17), 170504 (2015)ADSCrossRef
14.
go back to reference Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96(6), 060502 (2006)ADSCrossRef Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96(6), 060502 (2006)ADSCrossRef
15.
go back to reference Huber, M., Sengupta, R.: Witnessing genuine multipartite entanglement with positive maps. Phys. Rev. Lett. 113(10), 100501 (2014)ADSCrossRef Huber, M., Sengupta, R.: Witnessing genuine multipartite entanglement with positive maps. Phys. Rev. Lett. 113(10), 100501 (2014)ADSCrossRef
16.
go back to reference Cabello, A., Rossi, A., Vallone, G., De Martini, F., Mataloni, P.: Proposed bell experiment with genuine energy-time entanglement. Phys. Rev. Lett. 102(4), 040401 (2009)ADSCrossRef Cabello, A., Rossi, A., Vallone, G., De Martini, F., Mataloni, P.: Proposed bell experiment with genuine energy-time entanglement. Phys. Rev. Lett. 102(4), 040401 (2009)ADSCrossRef
17.
go back to reference Kraft, T., Ritz, C., Brunner, N., Huber, M., Gühne, O.: Characterizing genuine multilevel entanglement. Phys. Rev. Lett. 120(6), 060502 (2018)ADSCrossRef Kraft, T., Ritz, C., Brunner, N., Huber, M., Gühne, O.: Characterizing genuine multilevel entanglement. Phys. Rev. Lett. 120(6), 060502 (2018)ADSCrossRef
18.
go back to reference Tóth, G., Gühne, O.: Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94(6), 060501 (2005)ADSCrossRef Tóth, G., Gühne, O.: Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94(6), 060501 (2005)ADSCrossRef
19.
go back to reference Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104(21), 210501 (2010)ADSCrossRef Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104(21), 210501 (2010)ADSCrossRef
20.
go back to reference Agrawal, S., Halder, S., Banik, M.: Genuinely entangled subspace with all-encompassing distillable entanglement across every bipartition. Phys. Rev. A 99, 032335 (2019)ADSCrossRef Agrawal, S., Halder, S., Banik, M.: Genuinely entangled subspace with all-encompassing distillable entanglement across every bipartition. Phys. Rev. A 99, 032335 (2019)ADSCrossRef
21.
go back to reference Wieśniak, M., Pandya, P., Sakarya, O., Woloncewicz, B.: Distance between bound entangled states from unextendible product basis and separable states. Quantum Rep. 2(1), 49–56 (2019)CrossRef Wieśniak, M., Pandya, P., Sakarya, O., Woloncewicz, B.: Distance between bound entangled states from unextendible product basis and separable states. Quantum Rep. 2(1), 49–56 (2019)CrossRef
22.
go back to reference Dicarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467(7315), 574–8 (2010)ADSCrossRef Dicarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467(7315), 574–8 (2010)ADSCrossRef
23.
go back to reference Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482(7385), 382–5 (2012)ADSCrossRef Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482(7385), 382–5 (2012)ADSCrossRef
24.
go back to reference Chen, L., Djokovic, D.Z.: Nonexistence of n-qubit unextendible product bases of size \(2^n-5\). Quantum Inf. Process. 17(2), 24 (2018)ADSCrossRef Chen, L., Djokovic, D.Z.: Nonexistence of n-qubit unextendible product bases of size \(2^n-5\). Quantum Inf. Process. 17(2), 24 (2018)ADSCrossRef
28.
go back to reference Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)ADSMathSciNetCrossRef Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)ADSMathSciNetCrossRef
29.
go back to reference Feng, K.: Unextendible product bases and \(1\)-factorization of complete graphs. Discret. Appl. Math. 154, 942–949 (2006)MathSciNetCrossRef Feng, K.: Unextendible product bases and \(1\)-factorization of complete graphs. Discret. Appl. Math. 154, 942–949 (2006)MathSciNetCrossRef
30.
go back to reference Yang, Y.H., Gao, F., Xu, G.B., Zuo, H.J., Zhang, Z.C., Wen, Q.Y.: Characterizing unextendible product bases in qutrit-ququad system. Sci. Rep. 5, 11963 (2015)ADSCrossRef Yang, Y.H., Gao, F., Xu, G.B., Zuo, H.J., Zhang, Z.C., Wen, Q.Y.: Characterizing unextendible product bases in qutrit-ququad system. Sci. Rep. 5, 11963 (2015)ADSCrossRef
32.
go back to reference Wang, K., Chen, L., Zhao, L., Guo, Y.: \(4\times 4\) unextendible product basis and genuinely entangled space. Quantum Inf. Process. 18(7), 202 (2019)ADSCrossRef Wang, K., Chen, L., Zhao, L., Guo, Y.: \(4\times 4\) unextendible product basis and genuinely entangled space. Quantum Inf. Process. 18(7), 202 (2019)ADSCrossRef
33.
go back to reference Chen, L., Djokovic, D.Z.: Multiqubit UPB: the method of formally orthogonal matrices. J. Phys. A Math. Theor. 51(26), 265302 (2018)ADSMathSciNetCrossRef Chen, L., Djokovic, D.Z.: Multiqubit UPB: the method of formally orthogonal matrices. J. Phys. A Math. Theor. 51(26), 265302 (2018)ADSMathSciNetCrossRef
Metadata
Title
The construction of 7-qubit unextendible product bases of size ten
Publication date
01-06-2020
Published in
Quantum Information Processing / Issue 6/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02684-8

Other articles of this Issue 6/2020

Quantum Information Processing 6/2020 Go to the issue