Skip to main content
Top
Published in: Polymer Science, Series D 1/2023

01-03-2023

The Formation of Microcracks during Climatic Aging of Polymer-Composite Materials

Authors: M. P. Lebedev, O. V. Startsev, M. G. Petrov, M. M. Kopyrin

Published in: Polymer Science, Series D | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review article substantiates the need to take into account internal stresses when predicting mechanical parameters in polymer-composite materials (PCMs) subject to climatic aging. The patterns of formation and development of microcracks under cyclic mechanical loads are considered. It is shown that similar microcracks are formed in PCMs due to the action of internal stresses during thermal and thermal-moisture cycling, during the transformation of sorbed water into ice. The nature of microcracking depends on the properties and morphology of polymer matrices and fibers, the number of cycles, the type of stacking, temperature difference, bond strength, the ratio of strength and deformation at the micro- and macrolevels, and other factors. The processes of thermal oxidation and photo-oxidation activate microcracking of polymer matrices in PCMs, proving the need for a profound inquiry into the density of microcracks in open climatic conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. N. Kablov, O. V. Startsev, A. S. Krotov, et al., “Climatic aging of composite materials: 1. Aging mechanisms,” Russ. Metall. (Metally) 2011, 993–1000 (2011).CrossRef E. N. Kablov, O. V. Startsev, A. S. Krotov, et al., “Climatic aging of composite materials: 1. Aging mechanisms,” Russ. Metall. (Metally) 2011, 993–1000 (2011).CrossRef
2.
go back to reference E. N. Kablov, O. V. Startsev, A. S. Krotov, et al., “Climatic aging of composite materials: 2. Relaxation of the initial structural nonequilibrium and through thickness gradient of properties,” Russ. Metall. (Metally) 2011, 1001–1007 (2011).CrossRef E. N. Kablov, O. V. Startsev, A. S. Krotov, et al., “Climatic aging of composite materials: 2. Relaxation of the initial structural nonequilibrium and through thickness gradient of properties,” Russ. Metall. (Metally) 2011, 1001–1007 (2011).CrossRef
3.
go back to reference E. N. Kablov, O. V. Startsev, A. S. Krotov, et al., “Climatic aging of composite materials: 3. Significant aging factors,” Russ. Metall. (Metally) 2012, 323–329 (2012).CrossRef E. N. Kablov, O. V. Startsev, A. S. Krotov, et al., “Climatic aging of composite materials: 3. Significant aging factors,” Russ. Metall. (Metally) 2012, 323–329 (2012).CrossRef
4.
go back to reference Long-Term Durability of Polymeric Matrix Composites, Ed. by K. V. Pochiraju, G. P. Tandon, and G. A. Schoeppner (Springer, 2012). Long-Term Durability of Polymeric Matrix Composites, Ed. by K. V. Pochiraju, G. P. Tandon, and G. A. Schoeppner (Springer, 2012).
5.
go back to reference H. B. Dexter, “Long-term environmental effects and flight service evaluation of composite materials,” Report NASA TM-89067 (NASA, 1987). H. B. Dexter, “Long-term environmental effects and flight service evaluation of composite materials,” Report NASA TM-89067 (NASA, 1987).
6.
go back to reference D. J. Baker, “Ten-year ground exposure of composite materials used on the bell model 206l helicopter flight service program,” NASA Technical Paper 3468, ARL Technical Report 480 (Hampton, Virginia, 1994). D. J. Baker, “Ten-year ground exposure of composite materials used on the bell model 206l helicopter flight service program,” NASA Technical Paper 3468, ARL Technical Report 480 (Hampton, Virginia, 1994).
7.
go back to reference R. Vodicka and B. Nelson, et al., “Long-term environmental durability of F/A-18 composite material,” DSTO-TN-0826DSTO (Aeronautical and Maritime Research Lab., Melbourn, Australia, 1999). R. Vodicka and B. Nelson, et al., “Long-term environmental durability of F/A-18 composite material,” DSTO-TN-0826DSTO (Aeronautical and Maritime Research Lab., Melbourn, Australia, 1999).
8.
go back to reference O. V. Startsev, Y. M. Vapirov, I. S. Deev, et al., “The effect of prolonged atmospheric ageing on the properties and structure of carbon plastic,” Mech. Compos. Mater. 22, 444–449 (1987).CrossRef O. V. Startsev, Y. M. Vapirov, I. S. Deev, et al., “The effect of prolonged atmospheric ageing on the properties and structure of carbon plastic,” Mech. Compos. Mater. 22, 444–449 (1987).CrossRef
9.
go back to reference N. K. Sookay, C. J. Klemperer, and V. E. Verijenko, “Environmental testing of advanced epoxy composites,” Compos. Struct. 62, 429–433 (2003).CrossRef N. K. Sookay, C. J. Klemperer, and V. E. Verijenko, “Environmental testing of advanced epoxy composites,” Compos. Struct. 62, 429–433 (2003).CrossRef
10.
go back to reference I. S. Deev, E. V. Kurshev, et al., “The influence of long-term climatic aging on the microstructure of the surface of epoxy organoplastics and the nature of its destruction under bending conditions,” Voprosy Materialoved., No. 3, 104–114 (2016). I. S. Deev, E. V. Kurshev, et al., “The influence of long-term climatic aging on the microstructure of the surface of epoxy organoplastics and the nature of its destruction under bending conditions,” Voprosy Materialoved., No. 3, 104–114 (2016).
11.
go back to reference E. N. Kablov and V. O. Startsev, “Climatic aging of aviation polymer composite materials: 1. Influence of significant factors,” Russ. Metall. (Metally) 2020, 364–372 (2020).CrossRef E. N. Kablov and V. O. Startsev, “Climatic aging of aviation polymer composite materials: 1. Influence of significant factors,” Russ. Metall. (Metally) 2020, 364–372 (2020).CrossRef
12.
go back to reference E. N. Kablov and V. O. Startsev, “Climatic aging of aviation polymer composite materials: 2. Development of methods for studying the early stages of aging,” Russ. Metall. (Metally) 2020, 1088–1094 (2020).CrossRef E. N. Kablov and V. O. Startsev, “Climatic aging of aviation polymer composite materials: 2. Development of methods for studying the early stages of aging,” Russ. Metall. (Metally) 2020, 1088–1094 (2020).CrossRef
13.
go back to reference V. O. Startsev, M. P. Lebedev, and A. S. Frolov, “Measurement of surface relief indicators in the study of aging and corrosion of materials. 1. Russian and foreign standards,” Vse Mater. Entsiklopedich. Spravochnik, No. 6, 32–38 (2018). V. O. Startsev, M. P. Lebedev, and A. S. Frolov, “Measurement of surface relief indicators in the study of aging and corrosion of materials. 1. Russian and foreign standards,” Vse Mater. Entsiklopedich. Spravochnik, No. 6, 32–38 (2018).
14.
go back to reference V. O. Startsev, M. P. Lebedev, and A. S. Frolov, “Measurement of surface relief indicators in the study of aging and corrosion of materials. 2. Polymers, polymer composites and aluminum alloys,” Vse Mater. Entsiklopedich. Spravochnik, No. 7, 24–29 (2018). V. O. Startsev, M. P. Lebedev, and A. S. Frolov, “Measurement of surface relief indicators in the study of aging and corrosion of materials. 2. Polymers, polymer composites and aluminum alloys,” Vse Mater. Entsiklopedich. Spravochnik, No. 7, 24–29 (2018).
15.
go back to reference V. O. Startsev, E. O. Valevin, and A. I. Gulyaev, “Influence of surface aging of polymer composite materials on their mechanical properties,” Trudy VIAM, No. 8, 64—76 (2020). V. O. Startsev, E. O. Valevin, and A. I. Gulyaev, “Influence of surface aging of polymer composite materials on their mechanical properties,” Trudy VIAM, No. 8, 64—76 (2020).
16.
go back to reference L. Belec, T. H. Nguyen, D. L. Nguyen, et al., “Comparative effects of humid tropical weathering and artificial ageing on a model composite property from nano- to macro-scale,” Composites A 68, 235–241 (2015).CrossRef L. Belec, T. H. Nguyen, D. L. Nguyen, et al., “Comparative effects of humid tropical weathering and artificial ageing on a model composite property from nano- to macro-scale,” Composites A 68, 235–241 (2015).CrossRef
17.
go back to reference W. Tian and J. Hodgkin, “Long-term aging in a commercial aerospace composite sample: Chemical and physical changes,” J. Appl. Polym. Sci. 115, 2981–2985 (2010).CrossRef W. Tian and J. Hodgkin, “Long-term aging in a commercial aerospace composite sample: Chemical and physical changes,” J. Appl. Polym. Sci. 115, 2981–2985 (2010).CrossRef
18.
go back to reference D. Roylance and M. Roylance, “Weathering of fiber-reinforced epoxy composites,” Polym. Eng. Sci. 18, 249–254 (1978).CrossRef D. Roylance and M. Roylance, “Weathering of fiber-reinforced epoxy composites,” Polym. Eng. Sci. 18, 249–254 (1978).CrossRef
19.
go back to reference O. V. Startsev, A. S. Krotov, and L. T. Startseva, “Interlayer shear strength of polymer composite materials during long term climatic ageing,” Polym. Degrad. Stab. 63, 183–186 (1999).CrossRef O. V. Startsev, A. S. Krotov, and L. T. Startseva, “Interlayer shear strength of polymer composite materials during long term climatic ageing,” Polym. Degrad. Stab. 63, 183–186 (1999).CrossRef
20.
go back to reference V. O. Startsev, “Across-the-thickness gradient of the interlaminar shear strength of a CFRP after its long-term exposure to a marine climate,” Mech. Compos. Mater. 52, 171–176 (2016).CrossRef V. O. Startsev, “Across-the-thickness gradient of the interlaminar shear strength of a CFRP after its long-term exposure to a marine climate,” Mech. Compos. Mater. 52, 171–176 (2016).CrossRef
21.
go back to reference A. Blaga, “Weathering study of glass-fiber reinforced polyester sheets by scanning electron microscopy,” Polym. Eng. Sci. 12, 53–58 (1972).CrossRef A. Blaga, “Weathering study of glass-fiber reinforced polyester sheets by scanning electron microscopy,” Polym. Eng. Sci. 12, 53–58 (1972).CrossRef
22.
go back to reference A. Blaga and R. S. Yamasaki, “Mechanism of breakdown in the interface region of glass reinforced polyester by artificial weathering,” J. Mat. Sci. 8, 654–666 (1973).CrossRef A. Blaga and R. S. Yamasaki, “Mechanism of breakdown in the interface region of glass reinforced polyester by artificial weathering,” J. Mat. Sci. 8, 654–666 (1973).CrossRef
23.
go back to reference F. Awaja, M.-T. Nguyen, S. Zhang, et al., “The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro-CT,” Composites A 42, 408–418 (2011).CrossRef F. Awaja, M.-T. Nguyen, S. Zhang, et al., “The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro-CT,” Composites A 42, 408–418 (2011).CrossRef
24.
go back to reference F. Awaja, S. Zhang, M. Tripathi, et al., “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Prog. Mater. Sci. 83, 536–573 (2016).CrossRef F. Awaja, S. Zhang, M. Tripathi, et al., “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Prog. Mater. Sci. 83, 536–573 (2016).CrossRef
25.
go back to reference O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in extremely cold climates,” Izv. Altai Gos. Univ., No. 1, 41–51 (2020). O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in extremely cold climates,” Izv. Altai Gos. Univ., No. 1, 41–51 (2020).
26.
go back to reference S. Abrate, “Matrix cracking in laminated composites: A review,” Compos. Eng. 1, 337–353 (1991).CrossRef S. Abrate, “Matrix cracking in laminated composites: A review,” Compos. Eng. 1, 337–353 (1991).CrossRef
27.
go back to reference S. L. Ogin, P. A. Smith, and P. W. R. Beaumont, “Matrix cracking and stiffness reduction during the fatigue of a (0/90)S GFRP laminate,” Compos. Sci. Technol. 22, 23–31 (1985).CrossRef S. L. Ogin, P. A. Smith, and P. W. R. Beaumont, “Matrix cracking and stiffness reduction during the fatigue of a (0/90)S GFRP laminate,” Compos. Sci. Technol. 22, 23–31 (1985).CrossRef
28.
go back to reference P. A. Carraro, L. Maragoni, and M. Quaresimin, “Prediction of the crack density evolution in multidirectional laminates under fatigue loading,” Compos. Sci. Technol. 128, 147–154 (2016). P. A. Carraro, L. Maragoni, and M. Quaresimin, “Prediction of the crack density evolution in multidirectional laminates under fatigue loading,” Compos. Sci. Technol. 128, 147–154 (2016).
29.
go back to reference L. Maragoni, P. A. Carraro, M. Peron, et al., “Fatigue behavior of glass/epoxy laminates in the presence of voids,” Int. J. Fatigue 95, 18–28 (2017).CrossRef L. Maragoni, P. A. Carraro, M. Peron, et al., “Fatigue behavior of glass/epoxy laminates in the presence of voids,” Int. J. Fatigue 95, 18–28 (2017).CrossRef
30.
go back to reference M. J. M. Fikry, S. Ogihara, and V. Vinogradov, “The effect of matrix cracking on mechanical properties in FRP laminates,” Mech. Adv. Mater. Modern Processes 4, 3 (2018).CrossRef M. J. M. Fikry, S. Ogihara, and V. Vinogradov, “The effect of matrix cracking on mechanical properties in FRP laminates,” Mech. Adv. Mater. Modern Processes 4, 3 (2018).CrossRef
31.
go back to reference Z. Hashin, “Analysis of cracked laminates: A variation approach,” Mech. Mater. 4, 121–136 (1985).CrossRef Z. Hashin, “Analysis of cracked laminates: A variation approach,” Mech. Mater. 4, 121–136 (1985).CrossRef
32.
go back to reference M. Kashtalyan and C. Soutis, “Modelling of stiffness degradation due to cracking in laminates subjected to multi-axial loading,” Phil. Trans. A. Math. Phys. Eng. Sci. 374, 20160017 (2016). M. Kashtalyan and C. Soutis, “Modelling of stiffness degradation due to cracking in laminates subjected to multi-axial loading,” Phil. Trans. A. Math. Phys. Eng. Sci. 374, 20160017 (2016).
33.
go back to reference B. N. Nguyen, “Damage modeling of laminated composites by the use of multilayer volume elements,” Compos. Sci. Technol. 58, 891–905 (1998).CrossRef B. N. Nguyen, “Damage modeling of laminated composites by the use of multilayer volume elements,” Compos. Sci. Technol. 58, 891–905 (1998).CrossRef
34.
go back to reference H. T. Hahn, “Residual stresses in polymer matrix composite laminates,” J. Compos. Materials 10, 266–278 (1976).CrossRef H. T. Hahn, “Residual stresses in polymer matrix composite laminates,” J. Compos. Materials 10, 266–278 (1976).CrossRef
35.
go back to reference J. A. Nairn, “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites,” Polym. Compos. 6, 123–130 (1985).CrossRef J. A. Nairn, “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites,” Polym. Compos. 6, 123–130 (1985).CrossRef
36.
go back to reference E. C. Peterson, R. R. Patil, A. R. Kallmeyer, et al., “A micromechanical damage model for carbon fiber composites at reduced temperatures,” J. Compos. Mater. 42, 2063–2082 (2008).CrossRef E. C. Peterson, R. R. Patil, A. R. Kallmeyer, et al., “A micromechanical damage model for carbon fiber composites at reduced temperatures,” J. Compos. Mater. 42, 2063–2082 (2008).CrossRef
37.
go back to reference L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Comp. Mater. Sci. 68, 255–262 (2013).CrossRef L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Comp. Mater. Sci. 68, 255–262 (2013).CrossRef
38.
go back to reference D. S. Adams, D. E. Bowles, and C. T. Heracovich, “Thermally induced transvers cracking in graphite-epoxy cross-ply laminates,” J. Reinf. Plast. Compos. 5, 152–169 (1986).CrossRef D. S. Adams, D. E. Bowles, and C. T. Heracovich, “Thermally induced transvers cracking in graphite-epoxy cross-ply laminates,” J. Reinf. Plast. Compos. 5, 152–169 (1986).CrossRef
39.
go back to reference D. E. Bowles, “Effect of microcracks on the thermal expansion of composite laminates,” J. Compos. Mater. 17, 173–187 (1984).CrossRef D. E. Bowles, “Effect of microcracks on the thermal expansion of composite laminates,” J. Compos. Mater. 17, 173–187 (1984).CrossRef
40.
go back to reference C. T. Herakovich and M. W. Hier, “Damage-induced property changes in composites subjected to cyclic thermal loading,” Eng. Fract. Mech. 25, 779–791 (1986).CrossRef C. T. Herakovich and M. W. Hier, “Damage-induced property changes in composites subjected to cyclic thermal loading,” Eng. Fract. Mech. 25, 779–791 (1986).CrossRef
41.
go back to reference J. Cinquin and B. Medda, “Influence of laminate thickness on composite durability for long term utilization at intermediate temperature (100-150°C),” Compos. Sci. Technol. 69, 1432–1436 (2009).CrossRef J. Cinquin and B. Medda, “Influence of laminate thickness on composite durability for long term utilization at intermediate temperature (100-150°C),” Compos. Sci. Technol. 69, 1432–1436 (2009).CrossRef
42.
go back to reference M. C. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol. 64, 1725–1735 (2004).CrossRef M. C. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol. 64, 1725–1735 (2004).CrossRef
43.
go back to reference J. P. Komorowski, “Hygrothermal effects in continuous fibre reinforced composites: Part 2: Physical properties,” National Research Council Canada, National Aeronautical Establishment, Structures and Materials Laboratory. Aeronautical Note NAE-AN-10, NRC 22700 (Ottawa, 1983). J. P. Komorowski, “Hygrothermal effects in continuous fibre reinforced composites: Part 2: Physical properties,” National Research Council Canada, National Aeronautical Establishment, Structures and Materials Laboratory. Aeronautical Note NAE-AN-10, NRC 22700 (Ottawa, 1983).
44.
go back to reference E. N. Kablov and V. O. Startsev, “System analysis of the climate effect on the mechanical properties of polymer composite materials according to domestic and foreign sources,” Aviats. Mater. Tekhnol., No. 2, 47–58 (2018). E. N. Kablov and V. O. Startsev, “System analysis of the climate effect on the mechanical properties of polymer composite materials according to domestic and foreign sources,” Aviats. Mater. Tekhnol., No. 2, 47–58 (2018).
45.
go back to reference A. V. Slavin and V. O. Startsev, “Properties of aviation glass-reinforced plastics and carbon-reinforced plastics at an early stage of climatic impact,” Trudy VIAM, No. 9, 71–82 (2018). A. V. Slavin and V. O. Startsev, “Properties of aviation glass-reinforced plastics and carbon-reinforced plastics at an early stage of climatic impact,” Trudy VIAM, No. 9, 71–82 (2018).
46.
go back to reference H. Bouadi and C. T. Sun, “Hygrothermal effects on the stress field of laminated composites,” J. Reinf. Plast. Compos. 8, 40–54 (1989).CrossRef H. Bouadi and C. T. Sun, “Hygrothermal effects on the stress field of laminated composites,” J. Reinf. Plast. Compos. 8, 40–54 (1989).CrossRef
47.
go back to reference R. B. Pipes, J. R. Vinson, and T. -W. Chou, “On the hygrothermal response of laminated composite system,” J. Compos. Mater. 10, 129–148 (1976).CrossRef R. B. Pipes, J. R. Vinson, and T. -W. Chou, “On the hygrothermal response of laminated composite system,” J. Compos. Mater. 10, 129–148 (1976).CrossRef
48.
go back to reference B. D. Harper and Y. Weitsman, “On the effects of environmental conditioning on residual stresses in composite laminates,” Int. J. Solids Struct. 21, 907–926 (1985).CrossRef B. D. Harper and Y. Weitsman, “On the effects of environmental conditioning on residual stresses in composite laminates,” Int. J. Solids Struct. 21, 907–926 (1985).CrossRef
49.
go back to reference P. J. Liotier, A. Vautrin, J. M. Beraud, et al., “Introduction to the characterization of hygrothermal microcracking of crossply composites reinforced by stitched non-woven UD laminae,” Appl. Mech. Mater. 13–14, 77–83 (2008). P. J. Liotier, A. Vautrin, J. M. Beraud, et al., “Introduction to the characterization of hygrothermal microcracking of crossply composites reinforced by stitched non-woven UD laminae,” Appl. Mech. Mater. 13–14, 77–83 (2008).
50.
go back to reference L. Liu, Z. Zhao, W. Chen, et al., “Interlaminar shear property and high-velocity impact resistance of CFRP laminates after cyclic hygrothermal aging,” Int. J. Crashworthiness 25, 307–320 (2020).CrossRef L. Liu, Z. Zhao, W. Chen, et al., “Interlaminar shear property and high-velocity impact resistance of CFRP laminates after cyclic hygrothermal aging,” Int. J. Crashworthiness 25, 307–320 (2020).CrossRef
51.
go back to reference Y. J. Weistman and Y.-J. Guo, “A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites,” Compos. Sci. Technol. 62, 889–908 (2002).CrossRef Y. J. Weistman and Y.-J. Guo, “A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites,” Compos. Sci. Technol. 62, 889–908 (2002).CrossRef
52.
go back to reference M. Khodjet-Kesba, E. A. A. Bedia, A. Benkhedda, et al., “The influence of hygrothermal effects on the cross-ply composite laminate with transverse cracking in transient mode,” Mech. Ind. 18, 102 (2017).CrossRef M. Khodjet-Kesba, E. A. A. Bedia, A. Benkhedda, et al., “The influence of hygrothermal effects on the cross-ply composite laminate with transverse cracking in transient mode,” Mech. Ind. 18, 102 (2017).CrossRef
53.
go back to reference O. V. Startsev, M. P. Lebedev, V. V. Polyakov, et al., “Acoustic emission at the crack tip during cooling of a moisture-saturated composite,” Dokl. Phys. Chem. 493, 91–94 (2020).CrossRef O. V. Startsev, M. P. Lebedev, V. V. Polyakov, et al., “Acoustic emission at the crack tip during cooling of a moisture-saturated composite,” Dokl. Phys. Chem. 493, 91–94 (2020).CrossRef
54.
go back to reference S. D. Sokova, “The choice of electrical insulating materials for repair, taking into account their compatibility and operating features,” Vestn. Mosk. Gos. Stroit. Univ., No. 4, 151–156 (2010). S. D. Sokova, “The choice of electrical insulating materials for repair, taking into account their compatibility and operating features,” Vestn. Mosk. Gos. Stroit. Univ., No. 4, 151–156 (2010).
55.
go back to reference V. M. Karbhary, J. Rivera, and J. Zhang, “Low-temperature hygrothermal degradation of ambient cured E-glass/vinylester composites,” J. Appl. Polym. Sci. 86, 2255–2260 (2002).CrossRef V. M. Karbhary, J. Rivera, and J. Zhang, “Low-temperature hygrothermal degradation of ambient cured E-glass/vinylester composites,” J. Appl. Polym. Sci. 86, 2255–2260 (2002).CrossRef
56.
go back to reference X. Colin, A. Mavel, C. Marais, et al., “Interaction between cracking and oxidation in organic matrix composites,” J. Compos. Mater. 39, 1371–1389 (2005).CrossRef X. Colin, A. Mavel, C. Marais, et al., “Interaction between cracking and oxidation in organic matrix composites,” J. Compos. Mater. 39, 1371–1389 (2005).CrossRef
57.
go back to reference A. Khajeh, F. Mustapha, M. T. H. Sultan, et al., “The effect of thermooxidative aging on the durability of glass fiber-reinforced epoxy,” Adv. Mater. Sci. Eng. 2015, 372354 (2015).CrossRef A. Khajeh, F. Mustapha, M. T. H. Sultan, et al., “The effect of thermooxidative aging on the durability of glass fiber-reinforced epoxy,” Adv. Mater. Sci. Eng. 2015, 372354 (2015).CrossRef
58.
go back to reference J. W. Chin, “Durability of Composites Exposed to Ultraviolet Radiation,” in Durability of Composites for Civil Structural Applications, Ed. by V. M. Karbhan (Woodhead, 2007). J. W. Chin, “Durability of Composites Exposed to Ultraviolet Radiation,” in Durability of Composites for Civil Structural Applications, Ed. by V. M. Karbhan (Woodhead, 2007).
59.
go back to reference B. G. Kumar, R. P. Singh, and T. Nakamura, “Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation,” J. Compos. Mater. 36, 2713–2733 (2002).CrossRef B. G. Kumar, R. P. Singh, and T. Nakamura, “Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation,” J. Compos. Mater. 36, 2713–2733 (2002).CrossRef
60.
go back to reference M. Bazli, H. Ashrafi, A. Jafari, et al., “Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environment,” Polymers 11 (1401) (2019). M. Bazli, H. Ashrafi, A. Jafari, et al., “Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environment,” Polymers 11 (1401) (2019).
61.
go back to reference H. W. Lord and P. K. Dutta, “On the design of polymeric composite structures for cold regions applications,” J. Reinf. Plast. Compos. 7, 435–458 (1988).CrossRef H. W. Lord and P. K. Dutta, “On the design of polymeric composite structures for cold regions applications,” J. Reinf. Plast. Compos. 7, 435–458 (1988).CrossRef
62.
go back to reference J. A. Nairn, “Matrix Microcracking in Composites,” in Polymer Matrix Composites, Ed. by R. Talreja and J. A. Manson (2000), Vol. 2, pp. 403–432. J. A. Nairn, “Matrix Microcracking in Composites,” in Polymer Matrix Composites, Ed. by R. Talreja and J. A. Manson (2000), Vol. 2, pp. 403–432.
63.
go back to reference M. G. Petrov, Strength and Durability of Structural Elements: An Approach Based on Models of Material as a Physical Medium (Lambert Academic, Saarbrucken, 2015). M. G. Petrov, Strength and Durability of Structural Elements: An Approach Based on Models of Material as a Physical Medium (Lambert Academic, Saarbrucken, 2015).
64.
go back to reference E. N. Kablov and V. O. Startsev, “Influence of internal stresses on the aging of polymer composite materials,” Mekh. Kompozit. Mater. 57, 805–822 (2021). E. N. Kablov and V. O. Startsev, “Influence of internal stresses on the aging of polymer composite materials,” Mekh. Kompozit. Mater. 57, 805–822 (2021).
65.
go back to reference J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” Appl. Mech. Rev. 54, 279–300 (2001).CrossRef J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” Appl. Mech. Rev. 54, 279–300 (2001).CrossRef
66.
go back to reference E. N. Kablov and V. O. Startsev, “Measuring and predicting the temperature of material samples when exposed to various climatic zones,” Aviats. Mater. Tekhnol., No. 4, 47–58 (2020). E. N. Kablov and V. O. Startsev, “Measuring and predicting the temperature of material samples when exposed to various climatic zones,” Aviats. Mater. Tekhnol., No. 4, 47–58 (2020).
Metadata
Title
The Formation of Microcracks during Climatic Aging of Polymer-Composite Materials
Authors
M. P. Lebedev
O. V. Startsev
M. G. Petrov
M. M. Kopyrin
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 1/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S199542122301015X

Other articles of this Issue 1/2023

Polymer Science, Series D 1/2023 Go to the issue

Premium Partners