Published in:
06-05-2022
The Resolution of Keller’s Conjecture
Authors:
Joshua Brakensiek, Marijn Heule, John Mackey, David Narváez
Published in:
Journal of Automated Reasoning
|
Issue 3/2022
Log in
Abstract
We consider three graphs, \(G_{7,3}\), \(G_{7,4}\), and \(G_{7,6}\), related to Keller’s conjecture in dimension 7. The conjecture is false for this dimension if and only if at least one of the graphs contains a clique of size \(2^7 = 128\). We present an automated method to solve this conjecture by encoding the existence of such a clique as a propositional formula. We apply satisfiability solving combined with symmetry-breaking techniques to determine that no such clique exists. This result implies that every unit cube tiling of \(\mathbb {R}^7\) contains a facesharing pair of cubes. Since a faceshare-free unit cube tiling of \(\mathbb {R}^8\) exists (which we also verify), this completely resolves Keller’s conjecture.