Skip to main content
Top
Published in: Experimental Mechanics 6/2008

01-12-2008

The Validity Range of Low Fidelity Structural Membrane Models

Authors: B. Stanford, P. Ifju

Published in: Experimental Mechanics | Issue 6/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three classes of structural models can be considered for the characterization of thin extensible pressurized membranes. A low-fidelity, linear model assumes that all of the membrane’s resistance to a transverse pressure is provided from geometric stress-stiffening, and that movement along the membrane is purely out-of-plane. A medium-fidelity model can include geometric nonlinearity (finite strains, non-conservative pressure loads); while the highest level of membrane modeling assumes material nonlinearity: specifically, hyperelasticity. Common modeling applications such as performance prediction, failure prevention, and structural optimization all require repeated function evaluations. As computational cost is proportional to model fidelity, what is the validity range of the two lower fidelity models discussed above? The presence of a large pre-tension within the membrane is known to lessen the role of nonlinear elastic effects: the range of linear transverse deformation increases with pre-tension. Conversely, very low pre-tensions require the use of a nonlinear model, as the linear model becomes unbounded. This work studies the Hencky–Campbell problem for model validation purposes: hydrostatic inflation of a thin flat circular membrane, clamped along its boundary, with an arbitrary initial tension. A full-field, non-contact visual image correlation system is used to estimate the material properties of the rubber membrane, measure the state of pre-tension in the circular sheet, and document the displacement and strain fields as a function of applied pressure. The resulting data set is then compared directly with numerical simulations, in order to estimate the location of the surface of data points wherein a particular low fidelity model (either linear or geometrically nonlinear) loses its predictive capability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gridchin V, Grichenko V, Lubimsky V (2005) Square-membrane deflection and stress: identifying the validity range of a calculation procedure. Russ Microelectron 34(3):173–180.CrossRef Gridchin V, Grichenko V, Lubimsky V (2005) Square-membrane deflection and stress: identifying the validity range of a calculation procedure. Russ Microelectron 34(3):173–180.CrossRef
2.
go back to reference Marker D, Jenkins C (1997) Surface precision of optical membranes with curvature. Opt Express 1(11):324–331. Marker D, Jenkins C (1997) Surface precision of optical membranes with curvature. Opt Express 1(11):324–331.
3.
go back to reference Chow P (1992) Construction of pressurized, self-supporting membrane structure on the Moon. J Aerosp Eng 5(3):274–281.CrossRef Chow P (1992) Construction of pressurized, self-supporting membrane structure on the Moon. J Aerosp Eng 5(3):274–281.CrossRef
4.
go back to reference Pauletti R, Guirardi D, Deifeld T (2005) Argyris’ natural finite element revisited. International Conference on Textile Composites and Inflatable Structures, Stuttgart, Germany, October 2–5. Pauletti R, Guirardi D, Deifeld T (2005) Argyris’ natural finite element revisited. International Conference on Textile Composites and Inflatable Structures, Stuttgart, Germany, October 2–5.
5.
go back to reference Galvao R, Israeli E, Song A, Tian X, Bishop K, Swartz S, Breuer K (2006) The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics. AIAA Fluid Dynamics Conference and Exhibit, San Francisco, CA, June 5–8. Galvao R, Israeli E, Song A, Tian X, Bishop K, Swartz S, Breuer K (2006) The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics. AIAA Fluid Dynamics Conference and Exhibit, San Francisco, CA, June 5–8.
6.
go back to reference Hencky H (1915) On the stress state in circular plates with vanishing bending stiffness. Zietschrift fur Mathematik und Physik 63(3):311–317. Hencky H (1915) On the stress state in circular plates with vanishing bending stiffness. Zietschrift fur Mathematik und Physik 63(3):311–317.
7.
go back to reference Campbell J (1956) On the theory of initially tensioned circular membranes subjected to uniform pressure. Q J Mech Appl Math 9(1):84–93.MATHCrossRef Campbell J (1956) On the theory of initially tensioned circular membranes subjected to uniform pressure. Q J Mech Appl Math 9(1):84–93.MATHCrossRef
8.
go back to reference Jenkins C, Leonard J (1991) Nonlinear dynamic response of membranes: state of the art. Appl Mech Rev 44(7):319–328.MathSciNet Jenkins C, Leonard J (1991) Nonlinear dynamic response of membranes: state of the art. Appl Mech Rev 44(7):319–328.MathSciNet
9.
go back to reference Jenkins C (1996) Nonlinear dynamic response of membranes: state of the art—update. Appl Mech Rev 49(10):S41–S48.CrossRef Jenkins C (1996) Nonlinear dynamic response of membranes: state of the art—update. Appl Mech Rev 49(10):S41–S48.CrossRef
10.
go back to reference Selvadurai A (2006) Deflections of a rubber membrane. J Mech Phys Solids 54(6):1093–1119.MATHCrossRef Selvadurai A (2006) Deflections of a rubber membrane. J Mech Phys Solids 54(6):1093–1119.MATHCrossRef
11.
go back to reference Komaragiri U, Begley M, Simmonds J (2005) The mechanical response of freestanding circular elastic films under point and pressure loads. J Appl Mech 72(2):203–212.MATHCrossRef Komaragiri U, Begley M, Simmonds J (2005) The mechanical response of freestanding circular elastic films under point and pressure loads. J Appl Mech 72(2):203–212.MATHCrossRef
12.
go back to reference Sheplak M, Dugundji J (1998) Large deflections of clamped circular plates under tension and transitions to membrane behavior. J Appl Mech 65(1):107–115.CrossRef Sheplak M, Dugundji J (1998) Large deflections of clamped circular plates under tension and transitions to membrane behavior. J Appl Mech 65(1):107–115.CrossRef
13.
go back to reference Cook R, Malkus D, Plesha W, Witt R (2002) Concepts and applications of finite element analysis. Wiley, New York, NY. Cook R, Malkus D, Plesha W, Witt R (2002) Concepts and applications of finite element analysis. Wiley, New York, NY.
14.
go back to reference Kennedy G (1952) A photogrammetric membrane analysis of an angle section in torsion. Masters Thesis, Department of Civil Engineering, University of Maryland, College Park, MD. Kennedy G (1952) A photogrammetric membrane analysis of an angle section in torsion. Masters Thesis, Department of Civil Engineering, University of Maryland, College Park, MD.
15.
go back to reference Fulop W (1954) The rubber membrane and the solution of Laplace’s equation. Br J Appl Phys 6(1):21–23.CrossRef Fulop W (1954) The rubber membrane and the solution of Laplace’s equation. Br J Appl Phys 6(1):21–23.CrossRef
16.
go back to reference Sugimoto T (1991) Analysis of circular elastic membrane wings. Transactions of the Japanese Aerodynamics and Space Sciences 34(105):154–166. Sugimoto T (1991) Analysis of circular elastic membrane wings. Transactions of the Japanese Aerodynamics and Space Sciences 34(105):154–166.
17.
go back to reference Fichter W (1997) Some solutions for the large deflections of uniformly loaded circular membranes. NASA Technical Paper, TP 3658. Fichter W (1997) Some solutions for the large deflections of uniformly loaded circular membranes. NASA Technical Paper, TP 3658.
18.
go back to reference Storakers B (1983) Variation principles and bounds for the approximate analysis of plane membranes under lateral pressure. J Appl Mech 50(4):743–749.MATH Storakers B (1983) Variation principles and bounds for the approximate analysis of plane membranes under lateral pressure. J Appl Mech 50(4):743–749.MATH
19.
go back to reference Kao R, Perrone N (1971) Large deflections of axisymmetric circular membranes. Int J Solids Struct 7(12):1601–1612.MATHCrossRef Kao R, Perrone N (1971) Large deflections of axisymmetric circular membranes. Int J Solids Struct 7(12):1601–1612.MATHCrossRef
21.
go back to reference Bouzidi R, Rayaut Y, Wielgosz C (2003) Finite elements for 2D problems of pressurized membranes. Comput Struct 81(26):2479–2490.CrossRef Bouzidi R, Rayaut Y, Wielgosz C (2003) Finite elements for 2D problems of pressurized membranes. Comput Struct 81(26):2479–2490.CrossRef
22.
go back to reference Taylor R, Onate E, Ubach P (2005) Finite element analysis of membrane structures. In: Onate E, Kröplin B (eds) Textile composites and inflatable structures. Springer, The Netherlands. Taylor R, Onate E, Ubach P (2005) Finite element analysis of membrane structures. In: Onate E, Kröplin B (eds) Textile composites and inflatable structures. Springer, The Netherlands.
23.
go back to reference Argyris J, Dunne P, Angelopoulos T, Bichat B (1974) Large natural strains and some special difficulties due to non-linearity incompressibility in finite elements. Comput Methods Appl Mech Eng 4(3):219–278.MATHCrossRef Argyris J, Dunne P, Angelopoulos T, Bichat B (1974) Large natural strains and some special difficulties due to non-linearity incompressibility in finite elements. Comput Methods Appl Mech Eng 4(3):219–278.MATHCrossRef
24.
go back to reference Pujara R, Lardner T (1978) Deformations of elastic membranes—effect of different constituitive relations. Zeitschrift fur Agnewandte Mathematik und Physik 29(2):315–327.MATHCrossRef Pujara R, Lardner T (1978) Deformations of elastic membranes—effect of different constituitive relations. Zeitschrift fur Agnewandte Mathematik und Physik 29(2):315–327.MATHCrossRef
25.
go back to reference Wilkes J (1998) Application of power series solutions of membrane equilibrium equation to the optical evaluation of membrane mirrors with curvature. U.S. Air Force Research Laboratory, AFRL-DE-PS-TR-1998-1069, Kirtland AFB. Wilkes J (1998) Application of power series solutions of membrane equilibrium equation to the optical evaluation of membrane mirrors with curvature. U.S. Air Force Research Laboratory, AFRL-DE-PS-TR-1998-1069, Kirtland AFB.
26.
go back to reference Hermida A (1994) Deflection and stress in preloaded rectangular membrane. NASA Technical Brief GSC 13561. Hermida A (1994) Deflection and stress in preloaded rectangular membrane. NASA Technical Brief GSC 13561.
27.
go back to reference Small M, Nix W (1992) Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J Mater Res 7(6):1553–1563.CrossRef Small M, Nix W (1992) Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J Mater Res 7(6):1553–1563.CrossRef
28.
go back to reference Kalkman A, Verbruggen A, Janssen G, Groen F (1999) A novel bulge-testing setup for rectangular free-standing thin films. Rev Sci Instrum 70(10):4026–4031.CrossRef Kalkman A, Verbruggen A, Janssen G, Groen F (1999) A novel bulge-testing setup for rectangular free-standing thin films. Rev Sci Instrum 70(10):4026–4031.CrossRef
29.
go back to reference Stevens H (1944) Behavior of circular membranes stretched above the elastic limit by air pressure. Soc Exp Stress Anal, Boston, MA, May 18–20. Stevens H (1944) Behavior of circular membranes stretched above the elastic limit by air pressure. Soc Exp Stress Anal, Boston, MA, May 18–20.
30.
go back to reference Treloar L (1944) Strains in an Inflated sheet, and the mechanism of bursting. Inst Rubber Ind 19:201–212. Treloar L (1944) Strains in an Inflated sheet, and the mechanism of bursting. Inst Rubber Ind 19:201–212.
31.
go back to reference Bray J, Merry S (1999) A comparison of the response of geosynthetics in the multi-axial and uniaxial test devices. Geosynth Int. 6(1):19–40. Bray J, Merry S (1999) A comparison of the response of geosynthetics in the multi-axial and uniaxial test devices. Geosynth Int. 6(1):19–40.
32.
go back to reference Hsu F, Liu A, Downs J, Rigamonti D, Humphrey J (1995) A triplane video-based experimental system for studying axisymmetrically inflated biomembranes. IEEE Trans Biomed Eng 42(5):442–450.CrossRef Hsu F, Liu A, Downs J, Rigamonti D, Humphrey J (1995) A triplane video-based experimental system for studying axisymmetrically inflated biomembranes. IEEE Trans Biomed Eng 42(5):442–450.CrossRef
33.
go back to reference Reuge N, Schmidt F, Le Maoult Y, Rachik M, Abbé F (2001) Elastomer biaxial characterization using bubble inflation technique. I: experimental investigations. Polym Eng Sci 41(3):522–531.CrossRef Reuge N, Schmidt F, Le Maoult Y, Rachik M, Abbé F (2001) Elastomer biaxial characterization using bubble inflation technique. I: experimental investigations. Polym Eng Sci 41(3):522–531.CrossRef
34.
go back to reference Li Y, Nemes J, Derdouri A (2001) Membrane inflation of polymeric materials: experiments and finite elements. Polym Eng Sci 41(8):1399–1412.CrossRef Li Y, Nemes J, Derdouri A (2001) Membrane inflation of polymeric materials: experiments and finite elements. Polym Eng Sci 41(8):1399–1412.CrossRef
35.
go back to reference Mitchell J, Zorman C, Kicher T, Roy S, Mehregany M (2003) Examination of bulge test for determining residual stress, young’s modulus, and Poisson’s ratio of 3C–SiC thin films. J Aerosp Eng 16(2):46–54.CrossRef Mitchell J, Zorman C, Kicher T, Roy S, Mehregany M (2003) Examination of bulge test for determining residual stress, young’s modulus, and Poisson’s ratio of 3C–SiC thin films. J Aerosp Eng 16(2):46–54.CrossRef
36.
go back to reference Genovese K, Lamberti L, Pappalettere C (2006) Mechanical characterization of hyperelastic materials with fringe projection and optimization techniques. Opt Lasers Eng 4(5):423–442.CrossRef Genovese K, Lamberti L, Pappalettere C (2006) Mechanical characterization of hyperelastic materials with fringe projection and optimization techniques. Opt Lasers Eng 4(5):423–442.CrossRef
37.
go back to reference Sasso M, Amodio D (2006) Development of a Biaxial Stretching Machine for Rubbers by Optical Methods. Society for Experimental Mechanics Annual Conference, St. Louis, MO, June 4–7. Sasso M, Amodio D (2006) Development of a Biaxial Stretching Machine for Rubbers by Optical Methods. Society for Experimental Mechanics Annual Conference, St. Louis, MO, June 4–7.
38.
go back to reference Mase G, Mase G (1999) Continuum mechanics for engineers. CRC, Boca Raton, FL.MATH Mase G, Mase G (1999) Continuum mechanics for engineers. CRC, Boca Raton, FL.MATH
39.
go back to reference Wu B, Du X, Tan H (1996) A three-dimensional FE nonlinear analysis of membranes. Comput Struct 59(4):601–605.MATHCrossRef Wu B, Du X, Tan H (1996) A three-dimensional FE nonlinear analysis of membranes. Comput Struct 59(4):601–605.MATHCrossRef
40.
go back to reference Hashimoto O, Shimizu Y (1986) Reflecting characteristics of anisotropic rubber sheets and measurement of complex permittivity tensor. IEEE Trans Microwave Theor Tech 34(11):1202–1207.CrossRef Hashimoto O, Shimizu Y (1986) Reflecting characteristics of anisotropic rubber sheets and measurement of complex permittivity tensor. IEEE Trans Microwave Theor Tech 34(11):1202–1207.CrossRef
41.
go back to reference Sutton M, Cheng M, Peters W, Chao Y, McNeill S (1986) Application of optimized digital correlation method to planar analysis. Image Vis Comput 4(3):143–151.CrossRef Sutton M, Cheng M, Peters W, Chao Y, McNeill S (1986) Application of optimized digital correlation method to planar analysis. Image Vis Comput 4(3):143–151.CrossRef
42.
go back to reference Schreier H, Braasch J, Sutton M (2000) Systematic errors in digital image correlation caused by gray-value interpolation. Opt Eng 39(11):2915–2921.CrossRef Schreier H, Braasch J, Sutton M (2000) Systematic errors in digital image correlation caused by gray-value interpolation. Opt Eng 39(11):2915–2921.CrossRef
43.
go back to reference Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592.CrossRef Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592.CrossRef
44.
go back to reference Gibson L, Ashby M (1997) Cellular solids: structure and properties. Cambridge University Press, New York, NY. Gibson L, Ashby M (1997) Cellular solids: structure and properties. Cambridge University Press, New York, NY.
Metadata
Title
The Validity Range of Low Fidelity Structural Membrane Models
Authors
B. Stanford
P. Ifju
Publication date
01-12-2008
Publisher
Springer US
Published in
Experimental Mechanics / Issue 6/2008
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-008-9152-2

Other articles of this Issue 6/2008

Experimental Mechanics 6/2008 Go to the issue

Premium Partners