Skip to main content
Top
Published in: Journal of Materials Science 18/2016

20-06-2016 | Original Paper

Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible–near-infrared range

Authors: Anatoliy I. Fisenko, Vladimir F. Lemberg

Published in: Journal of Materials Science | Issue 18/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The knowledge of the thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing new metallic fuel materials for next generation of the nuclear reactors. The present work is devoted to the study of the thermal radiative and thermodynamic properties of the liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan–Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and the normal total emissivity are calculated using the experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible–near-infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during the liquid-to-solid transition. Unlike UC, such a difference between these functions has not been established for the plutonium carbide. The calculated values for the normal total emissivity of the uranium and plutonium carbides at their melting temperatures are in good agreement with the experimental data. Based on a model of Hagen–Rubens and the Wiedemann–Franz law, a new noncontact optical method to determine the thermal conductivity of metals and carbides at their melting/freezing points is proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A technology roadmap for generation IV nuclear energy systems (December 2002). DOE Report GIF-002-00 A technology roadmap for generation IV nuclear energy systems (December 2002). DOE Report GIF-002-00
3.
go back to reference Manara D, De Bruycker F, Sengupta AK, Agarwal R, Kamath HS (2012) The actinide carbides. In: Konings RJM (ed) Comprehensive nuclear materials. Elsevier, Amsterdam, p 3560 Manara D, De Bruycker F, Sengupta AK, Agarwal R, Kamath HS (2012) The actinide carbides. In: Konings RJM (ed) Comprehensive nuclear materials. Elsevier, Amsterdam, p 3560
4.
go back to reference Guéneau C, Dupin N, Sundman B, Rado C, Konings R (2007) A progress report on the development of FUELBASE a thermodynamic database for the description of multicomponent systems for nuclear fuel applications—Part 1, Binary systems rapport technique DPC/SCP 07-224 Indice A CEA/DEN/DANS/DPC/SCP/07-DO-31, Février Guéneau C, Dupin N, Sundman B, Rado C, Konings R (2007) A progress report on the development of FUELBASE a thermodynamic database for the description of multicomponent systems for nuclear fuel applications—Part 1, Binary systems rapport technique DPC/SCP 07-224 Indice A CEA/DEN/DANS/DPC/SCP/07-DO-31, Février
5.
go back to reference Holleck H, Kleykamp H (1986) Uranium carbides, 8th edn. Springer-Verlag, Berlin Holleck H, Kleykamp H (1986) Uranium carbides, 8th edn. Springer-Verlag, Berlin
6.
go back to reference Slieth A, Leibowitz L (Ô975) Equation of state and transport properties of uranium and plutonium carbides in the liquid region. Argonne National Laboratory, Lemont Slieth A, Leibowitz L (Ô975) Equation of state and transport properties of uranium and plutonium carbides in the liquid region. Argonne National Laboratory, Lemont
7.
go back to reference Washington ABG (1973) Preferred values for the thermal conductivity of sintered ceramic fuel for fast reactor use/UKAEA Authority TRG-report-2236 (D) Washington ABG (1973) Preferred values for the thermal conductivity of sintered ceramic fuel for fast reactor use/UKAEA Authority TRG-report-2236 (D)
8.
go back to reference Bober M, Karow HU, Muller K (1980) Study of the spectral reflectivity and emissivity of liquid ceramics. High Temp-High Pressure 12:161–168 Bober M, Karow HU, Muller K (1980) Study of the spectral reflectivity and emissivity of liquid ceramics. High Temp-High Pressure 12:161–168
9.
go back to reference De Coninck R, De Batist R, Gijs A (1976) Thermal diffusivity, thermal conductivity and spectral emissivity of uranium dicarbide at high temperatures. High Temp-High Pressure 8:167–176 De Coninck R, De Batist R, Gijs A (1976) Thermal diffusivity, thermal conductivity and spectral emissivity of uranium dicarbide at high temperatures. High Temp-High Pressure 8:167–176
10.
go back to reference Manara D, De Bruycker F, Boboridis K, Tougait O, Eloirdi R, Malki M (2012) High temperature radiance spectroscopy measurements of solid and liquid uranium and plutonium carbides. J Nucl Mater 426:126–138CrossRef Manara D, De Bruycker F, Boboridis K, Tougait O, Eloirdi R, Malki M (2012) High temperature radiance spectroscopy measurements of solid and liquid uranium and plutonium carbides. J Nucl Mater 426:126–138CrossRef
11.
go back to reference Fisenko AI, Ivashov SN (1999) Determination of the true temperature of emitted radiation bodies from generalized Wien’s displacement law. J Phys D 32:2882–2885CrossRef Fisenko AI, Ivashov SN (1999) Determination of the true temperature of emitted radiation bodies from generalized Wien’s displacement law. J Phys D 32:2882–2885CrossRef
12.
go back to reference Fisenko AI, Ivashov SN (2009) Determination of the true temperature of molybdenum and luminous flames from generalized Wien’s displacement and Stefan–Boltzmann’s laws: thermodynamics of thermal radiation. Int J Thermophys 30:1524–1535CrossRef Fisenko AI, Ivashov SN (2009) Determination of the true temperature of molybdenum and luminous flames from generalized Wien’s displacement and Stefan–Boltzmann’s laws: thermodynamics of thermal radiation. Int J Thermophys 30:1524–1535CrossRef
13.
go back to reference Fisenko AI, Lemberg V (2012) Radiative properties of stoichiometric hafnium, titanium, and zirconium carbides: thermodynamics of thermal radiation. Int J Thermophys 33:513–527CrossRef Fisenko AI, Lemberg V (2012) Radiative properties of stoichiometric hafnium, titanium, and zirconium carbides: thermodynamics of thermal radiation. Int J Thermophys 33:513–527CrossRef
14.
go back to reference Fisenko AI, Lemberg V (2013) Generalized Wien’s displacement law in determining the true temperature of ZrB2-SiC-based ultra-high temperature ceramic: thermodynamics of thermal radiation. Int J Thermophys 34:486–495CrossRef Fisenko AI, Lemberg V (2013) Generalized Wien’s displacement law in determining the true temperature of ZrB2-SiC-based ultra-high temperature ceramic: thermodynamics of thermal radiation. Int J Thermophys 34:486–495CrossRef
15.
go back to reference Landau LD, Lifshitz EM (1980) Statistical physics, course of theoretical physics, vol 5. Pergamon Press, Oxford Landau LD, Lifshitz EM (1980) Statistical physics, course of theoretical physics, vol 5. Pergamon Press, Oxford
16.
go back to reference Fisenko AI, Lemberg V (2015) Polylogarithmic representation of radiative and thermodynamic properties of thermal radiation in a given spectral range: I. Blackbody radiation. Int J Thermophys 36:1627–1639CrossRef Fisenko AI, Lemberg V (2015) Polylogarithmic representation of radiative and thermodynamic properties of thermal radiation in a given spectral range: I. Blackbody radiation. Int J Thermophys 36:1627–1639CrossRef
17.
go back to reference Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York
18.
go back to reference Manara D, Jackson HF, Perinetti-Casoni C, Boboridis K, Welland MJ, Luzzi L, Ossi PM, Lee WE (2013) The ZrC–C eutectic structure and melting behavior: A high-temperature radiance spectroscopy study. J Eur Ceram Soc 33:134–161CrossRef Manara D, Jackson HF, Perinetti-Casoni C, Boboridis K, Welland MJ, Luzzi L, Ossi PM, Lee WE (2013) The ZrC–C eutectic structure and melting behavior: A high-temperature radiance spectroscopy study. J Eur Ceram Soc 33:134–161CrossRef
19.
go back to reference Watanabe H, Susa M, Fukuyama H, Nagata K (2003) Phase dependence (liquid/solid) of normal spectral emissivities of noble metals at melting points. Int J Thermophys 24:223–237CrossRef Watanabe H, Susa M, Fukuyama H, Nagata K (2003) Phase dependence (liquid/solid) of normal spectral emissivities of noble metals at melting points. Int J Thermophys 24:223–237CrossRef
20.
go back to reference Watanabe H, Susa M, Fukuyama H, Nagata K (2003) Phase (liquid/solid) and wavelength dependence of spectral emissivity for Cu, Ag, and Au at melting points in near infrared region. Int J Thermophys 24:1105–1120CrossRef Watanabe H, Susa M, Fukuyama H, Nagata K (2003) Phase (liquid/solid) and wavelength dependence of spectral emissivity for Cu, Ag, and Au at melting points in near infrared region. Int J Thermophys 24:1105–1120CrossRef
21.
go back to reference Watanabe H, Susa M, Fukuyama H, Nagata K (2003) Phase (liquid/solid) dependence of the normal spectral emissivity for iron, cobalt, and nickel at melting points. Int J Thermophys 24:473–488CrossRef Watanabe H, Susa M, Fukuyama H, Nagata K (2003) Phase (liquid/solid) dependence of the normal spectral emissivity for iron, cobalt, and nickel at melting points. Int J Thermophys 24:473–488CrossRef
22.
go back to reference Modest MF (2013) Radiative heat transfer, 3rd edn. Academic Press, New York Modest MF (2013) Radiative heat transfer, 3rd edn. Academic Press, New York
23.
go back to reference Tritt T (ed) (2004) Thermal conductivity: theory, properties, and applications. Springer Tritt T (ed) (2004) Thermal conductivity: theory, properties, and applications. Springer
Metadata
Title
Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible–near-infrared range
Authors
Anatoliy I. Fisenko
Vladimir F. Lemberg
Publication date
20-06-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0138-7

Other articles of this Issue 18/2016

Journal of Materials Science 18/2016 Go to the issue

Premium Partners