Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 8/2021

01-02-2021 | Research Article-Mechanical Engineering

Thermosyphon Flat Plate Collector with Nanodiamond-Water Nanofluids: Properties, Friction Factor, Heat Transfer, Thermal Efficiency, and Cost Analysis

Authors: B. Saleh, L. Syam Sundar

Published in: Arabian Journal for Science and Engineering | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermal efficiency, friction factor, heat transfer, and cost analysis of a flat plate collector operates with water-based nanodiamond nanofluids under thermosyphon (natural circulation) conditions are investigated experimentally at 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% particle volume concentrations. The thermophysical properties of the working fluids are analyzed as well. Results show that the maximum thermal conductivity and viscosity enhancements are obtained by using 1.0 vol% concentration of nanofluid and found to be 22.86% and 79.16%, respectively, compared to water at a temperature of 60 °C. The maximum increases in Nusselt number are 19.53% and 36.17% using 1.0 vol% concentration of nanofluid compared to water at Reynolds number of 140 and 345, respectively. The maximum increases of friction factor are attained by using 1.0 vol% concentration of nanofluid and found to be 1.14 times and 1.25 times of water friction factor at Reynolds number of 143 and 345, respectively. The collector thermal efficiency increases from 57.15% using water to 69.85% using nanofluid with a concentration of 1.0%. The collector cost decreases approximately by 18.18% for 1.0 vol% nanofluid compared to water. The relative deviations of the equations developed to evaluate Nusselt number and friction factor are within ± 2.5%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sarsam, W.S.; Kazi, S.N.; Badarudin, A.: A review of studies on using nanofluids in flat-plate solar collectors. Sol. Energy 122, 1245–1265 (2015)CrossRef Sarsam, W.S.; Kazi, S.N.; Badarudin, A.: A review of studies on using nanofluids in flat-plate solar collectors. Sol. Energy 122, 1245–1265 (2015)CrossRef
2.
go back to reference Zyla, G.: Thermophysical properties of ethylene glycol based yttrium aluminum garnet (Y3Al5O12–EG) nanofluids. Int. J. Heat Mass Transfer 92, 751–756 (2016)CrossRef Zyla, G.: Thermophysical properties of ethylene glycol based yttrium aluminum garnet (Y3Al5O12–EG) nanofluids. Int. J. Heat Mass Transfer 92, 751–756 (2016)CrossRef
3.
go back to reference Dehkordi, B.L.; Kazi, S.; Hamdi, M.; Ghadimi, A.; Sadeghinezhad, E.; Metselaar, H.: Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transfer 49(8), 1109–1115 (2013)CrossRef Dehkordi, B.L.; Kazi, S.; Hamdi, M.; Ghadimi, A.; Sadeghinezhad, E.; Metselaar, H.: Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transfer 49(8), 1109–1115 (2013)CrossRef
4.
go back to reference Yang, L.; Du, K.; Zhang, X.-S.: Influence factors on thermal conductivity of ammonia-water nanofluids. J. Cent. South Univ. 19(6), 1622–1628 (2012)CrossRef Yang, L.; Du, K.; Zhang, X.-S.: Influence factors on thermal conductivity of ammonia-water nanofluids. J. Cent. South Univ. 19(6), 1622–1628 (2012)CrossRef
5.
go back to reference Mostafizur, R.; Bhuiyan, M.; Saidur, R.; Aziz, A.A.: Thermal conductivity variation for methanol based nanofluids. Int. J. Heat Mass Transfer 76, 350–356 (2014)CrossRef Mostafizur, R.; Bhuiyan, M.; Saidur, R.; Aziz, A.A.: Thermal conductivity variation for methanol based nanofluids. Int. J. Heat Mass Transfer 76, 350–356 (2014)CrossRef
6.
go back to reference Noghrehabadi, A.; Hajidavalloo, E.; Moravej, M.: Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid. Case Stud. Thermal Eng. 8, 378–386 (2016)CrossRef Noghrehabadi, A.; Hajidavalloo, E.; Moravej, M.: Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid. Case Stud. Thermal Eng. 8, 378–386 (2016)CrossRef
7.
go back to reference Verma, S.K.; Tiwari, A.K.; Chauhan, D.S.: Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers. Manag. 134, 103–115 (2017)CrossRef Verma, S.K.; Tiwari, A.K.; Chauhan, D.S.: Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers. Manag. 134, 103–115 (2017)CrossRef
8.
go back to reference Said, Z.; Saidur, R.; Rahim, N.A.: Energy and exergy analysis of a flat plate solar collector using different sizes of aluminum oxide based nanofluid. J. Clean. Prod. 133, 518–530 (2016)CrossRef Said, Z.; Saidur, R.; Rahim, N.A.: Energy and exergy analysis of a flat plate solar collector using different sizes of aluminum oxide based nanofluid. J. Clean. Prod. 133, 518–530 (2016)CrossRef
9.
go back to reference Meibodi, S.S.; Kianifar, A.; Niazmand, H.; Mahian, O.; Wongwises, S.: Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int. Commun. Heat Mass Transfer 65, 71–75 (2015)CrossRef Meibodi, S.S.; Kianifar, A.; Niazmand, H.; Mahian, O.; Wongwises, S.: Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int. Commun. Heat Mass Transfer 65, 71–75 (2015)CrossRef
10.
go back to reference Shojaeizadeh, E.; Veysi, F.; Kamandi, A.: Exergy efficiency investigation and optimization of an Al2O3–water nanofluid based Flat-plate solar collector. Energy Build. 101, 12–23 (2015)CrossRef Shojaeizadeh, E.; Veysi, F.; Kamandi, A.: Exergy efficiency investigation and optimization of an Al2O3–water nanofluid based Flat-plate solar collector. Energy Build. 101, 12–23 (2015)CrossRef
11.
go back to reference Moghadam, A.J.; Farzane-Gord, M.; Sajadi, M.; Hoseyn-Zadeh, M.: Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp. Thermal Fluid Sci. 58, 9–14 (2014)CrossRef Moghadam, A.J.; Farzane-Gord, M.; Sajadi, M.; Hoseyn-Zadeh, M.: Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp. Thermal Fluid Sci. 58, 9–14 (2014)CrossRef
12.
go back to reference He, Q.; Zeng, S.; Wang, S.: Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids. Appl. Therm. Eng. 88, 165–171 (2015)CrossRef He, Q.; Zeng, S.; Wang, S.: Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids. Appl. Therm. Eng. 88, 165–171 (2015)CrossRef
13.
go back to reference Okonkwo, E.C.; Wole-Osho, I.; Kavaz, D.; Abid, M.; Al-Ansari, T.: Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustain. Energy Technol. Assess. 37, 100636 (2020) Okonkwo, E.C.; Wole-Osho, I.; Kavaz, D.; Abid, M.; Al-Ansari, T.: Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustain. Energy Technol. Assess. 37, 100636 (2020)
14.
go back to reference Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S.: An experimental investigation on the effect of Al2O3-H2O nanofluid on the effectiveness of flat-plate solar collectors. Renew. Energy 39, 293–298 (2012)CrossRef Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S.: An experimental investigation on the effect of Al2O3-H2O nanofluid on the effectiveness of flat-plate solar collectors. Renew. Energy 39, 293–298 (2012)CrossRef
15.
go back to reference Arikan, E.; Abbasoglu, S.; Gazi, M.: Experimental performance analysis of flat plate solar collectors using different nanofluids. Sustain. Times 10, 1794 (2018)CrossRef Arikan, E.; Abbasoglu, S.; Gazi, M.: Experimental performance analysis of flat plate solar collectors using different nanofluids. Sustain. Times 10, 1794 (2018)CrossRef
16.
go back to reference Karami, M.; Akhavan-Bahabadi, M.A.; Delfani, S.; Raisee, M.: Experimental investigation of CuO nanofluid-based direct absorption solar collector for residential applications. Renew. Sustain. Energy Rev. 52, 793–801 (2015)CrossRef Karami, M.; Akhavan-Bahabadi, M.A.; Delfani, S.; Raisee, M.: Experimental investigation of CuO nanofluid-based direct absorption solar collector for residential applications. Renew. Sustain. Energy Rev. 52, 793–801 (2015)CrossRef
17.
go back to reference M. Faizal, R. Saidur, S. Mekhilef, Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid, IOP Conf. Ser. Earth Environ. Sci. 16 (2013). M. Faizal, R. Saidur, S. Mekhilef, Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid, IOP Conf. Ser. Earth Environ. Sci. 16 (2013).
18.
go back to reference Said, Z.; Saidur, R.; Rahim, N.A.; Alim, M.A.: Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build. 78, 1–9 (2014)CrossRef Said, Z.; Saidur, R.; Rahim, N.A.; Alim, M.A.: Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build. 78, 1–9 (2014)CrossRef
19.
go back to reference AninVincely, D.; Natarajan, E.: Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation. Energy Conversat. Manage. 117, 1–11 (2016)CrossRef AninVincely, D.; Natarajan, E.: Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation. Energy Conversat. Manage. 117, 1–11 (2016)CrossRef
20.
go back to reference Ajiwiguna, T.A.; Hamonangan, T.; Kirom, M.R.: Experimental study of thermal efficiency on plate-fin solar thermal collector. ARPN J. Eng. Appl. Sci. 11, 809–811 (2016) Ajiwiguna, T.A.; Hamonangan, T.; Kirom, M.R.: Experimental study of thermal efficiency on plate-fin solar thermal collector. ARPN J. Eng. Appl. Sci. 11, 809–811 (2016)
21.
go back to reference Alim, M.A.; Abdin, Z.; Saidur, R.; Hepbasli, A.; Khairul, M.A.; Rahim, N.A.: Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build. 66, 289–296 (2013)CrossRef Alim, M.A.; Abdin, Z.; Saidur, R.; Hepbasli, A.; Khairul, M.A.; Rahim, N.A.: Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build. 66, 289–296 (2013)CrossRef
22.
go back to reference Zamzamian, A.; Rad, M.K.; Neyestani, M.K.; Jamal-Abad, M.T.: An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 71, 658–664 (2014)CrossRef Zamzamian, A.; Rad, M.K.; Neyestani, M.K.; Jamal-Abad, M.T.: An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 71, 658–664 (2014)CrossRef
23.
go back to reference Sundar, L.S.; Kirubeil, A.; Punnaiah, V.; Singh, M.K.; Sousa, A.C.M.: Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts. Int. J. Heat Mass Transfer 127, 422–435 (2018)CrossRef Sundar, L.S.; Kirubeil, A.; Punnaiah, V.; Singh, M.K.; Sousa, A.C.M.: Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts. Int. J. Heat Mass Transfer 127, 422–435 (2018)CrossRef
24.
go back to reference Sundar, L.S.; Singh, M.K.; Sousa, A.C.M.: Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures. Diam. Relat. Mater. 69, 49–60 (2016)CrossRef Sundar, L.S.; Singh, M.K.; Sousa, A.C.M.: Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures. Diam. Relat. Mater. 69, 49–60 (2016)CrossRef
25.
go back to reference Jee, A.-Y.; Lee, M.: Surface functionalization and physicochemical characterization of diamond nanoparticles. Curr. Appl. Phys. 9, 144–147 (2009)CrossRef Jee, A.-Y.; Lee, M.: Surface functionalization and physicochemical characterization of diamond nanoparticles. Curr. Appl. Phys. 9, 144–147 (2009)CrossRef
26.
go back to reference SyamSundar, L.; Singh, M.K.; Sousa, A.C.M.: Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transfer 44, 7–14 (2013)CrossRef SyamSundar, L.; Singh, M.K.; Sousa, A.C.M.: Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transfer 44, 7–14 (2013)CrossRef
27.
go back to reference Yu, W.; Xie, H.; Li, Y.; Chen, L.; Wang, Q.: Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects 380, 1–5 (2011)CrossRef Yu, W.; Xie, H.; Li, Y.; Chen, L.; Wang, Q.: Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects 380, 1–5 (2011)CrossRef
28.
go back to reference Yoo, D.-H.; Hong, K.; Yang, H.-S.: Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochem. Acta 455(1), 66–69 (2007)CrossRef Yoo, D.-H.; Hong, K.; Yang, H.-S.: Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochem. Acta 455(1), 66–69 (2007)CrossRef
29.
go back to reference Cabaleiro, D.; Pastoriza-Gallego, M.J.; Gracia-Fernández, C.; Pineiro, M.M.; Lugo, L.: Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. Nanoscale Res. Lett. 8(1), 1–13 (2013)CrossRef Cabaleiro, D.; Pastoriza-Gallego, M.J.; Gracia-Fernández, C.; Pineiro, M.M.; Lugo, L.: Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. Nanoscale Res. Lett. 8(1), 1–13 (2013)CrossRef
30.
go back to reference Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Camacho, A.; Canzonieri, S.; Pineiro, M.M.: Thermal conductivity, rheological behaviour and density of nonnewtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibrium 337, 119–124 (2013)CrossRef Mariano, A.; Pastoriza-Gallego, M.J.; Lugo, L.; Camacho, A.; Canzonieri, S.; Pineiro, M.M.: Thermal conductivity, rheological behaviour and density of nonnewtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibrium 337, 119–124 (2013)CrossRef
31.
go back to reference Zhou, S.-Q.; Ni, R.: Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letter 92, 093123 (2008)CrossRef Zhou, S.-Q.; Ni, R.: Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letter 92, 093123 (2008)CrossRef
32.
go back to reference Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.: Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes. Energy 34, 1054–1064 (2009)CrossRef Jaisankar, S.; Radhakrishnan, T.K.; Sheeba, K.N.: Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes. Energy 34, 1054–1064 (2009)CrossRef
33.
go back to reference A. Whillier, Design factors influencing collector performance, low temperature engineering. In: Application of solar energy, ASHRAE, New York, 1967. A. Whillier, Design factors influencing collector performance, low temperature engineering. In: Application of solar energy, ASHRAE, New York, 1967.
34.
go back to reference H.C. Hottel, A. Whillier, Evaluation of fat plate collector performance, Trans. Conf. on the use of solar energy, University of Arizona Press, 2 (1) (1958) 74. H.C. Hottel, A. Whillier, Evaluation of fat plate collector performance, Trans. Conf. on the use of solar energy, University of Arizona Press, 2 (1) (1958) 74.
35.
go back to reference Bliss, R.W.: The derivation of several plate effectiveness factors useful in the design of flat plate solar heat collectors. Sol. Energy 3, 55–64 (1959)CrossRef Bliss, R.W.: The derivation of several plate effectiveness factors useful in the design of flat plate solar heat collectors. Sol. Energy 3, 55–64 (1959)CrossRef
36.
go back to reference Sieder, E.N.; Tate, G.E.: Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 28, 1429–1439 (1936)CrossRef Sieder, E.N.; Tate, G.E.: Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 28, 1429–1439 (1936)CrossRef
37.
go back to reference A. Amrollahi, A.M. Rashidi, R. Lotfi, M. Emami Meibodi, K. Kashefi, Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region, Int. Commun. Heat Mass Transfer 37 (2010) 717–723. A. Amrollahi, A.M. Rashidi, R. Lotfi, M. Emami Meibodi, K. Kashefi, Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region, Int. Commun. Heat Mass Transfer 37 (2010) 717–723.
38.
go back to reference Incropera, F.P.; Dewitt, D.P.: Introduction to heat transfer, 3rd edn. Wiley, New York (1996) Incropera, F.P.; Dewitt, D.P.: Introduction to heat transfer, 3rd edn. Wiley, New York (1996)
39.
go back to reference Ardante, F.; Beccali, G.; Cellura, M.; Brano, V.L.: Life cycle assessment of a solar thermal collector. Renew. Energy 30, 1031–1054 (2005)CrossRef Ardante, F.; Beccali, G.; Cellura, M.; Brano, V.L.: Life cycle assessment of a solar thermal collector. Renew. Energy 30, 1031–1054 (2005)CrossRef
40.
go back to reference Otanicar, T.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A.: Nanofluid-based direct absorption solar collector. J Renew. Sust. Energy 2, 033102 (2010)CrossRef Otanicar, T.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A.: Nanofluid-based direct absorption solar collector. J Renew. Sust. Energy 2, 033102 (2010)CrossRef
41.
go back to reference Sundar, L.S.; Misganaw, A.H.; Singh, M.K.; Pereira, A.M.B.; Sousa, A.C.M.: Efficiency, energy and economic analysis of twisted tape inserts in a thermosyphon solar flat plate collector with Cu nanofluids. Renew. Energy Focus 35(00), 1–22 (2020) Sundar, L.S.; Misganaw, A.H.; Singh, M.K.; Pereira, A.M.B.; Sousa, A.C.M.: Efficiency, energy and economic analysis of twisted tape inserts in a thermosyphon solar flat plate collector with Cu nanofluids. Renew. Energy Focus 35(00), 1–22 (2020)
42.
go back to reference Faizal, M.; Saidur, R.; Mekhilef, S.; Hepbasli, A.; Mahbubul, I.M.: Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technol. Environ. Policy 17, 1457–1473 (2015)CrossRef Faizal, M.; Saidur, R.; Mekhilef, S.; Hepbasli, A.; Mahbubul, I.M.: Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technol. Environ. Policy 17, 1457–1473 (2015)CrossRef
44.
go back to reference Coleman, H.W.; Steel, W.G.: Experimental and uncertainty analysis for engineers. Wiley Interscience, New York (1989) Coleman, H.W.; Steel, W.G.: Experimental and uncertainty analysis for engineers. Wiley Interscience, New York (1989)
Metadata
Title
Thermosyphon Flat Plate Collector with Nanodiamond-Water Nanofluids: Properties, Friction Factor, Heat Transfer, Thermal Efficiency, and Cost Analysis
Authors
B. Saleh
L. Syam Sundar
Publication date
01-02-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 8/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05371-7

Other articles of this Issue 8/2021

Arabian Journal for Science and Engineering 8/2021 Go to the issue

Premium Partners