Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2018

11-07-2018

Three dimensional network Si–C composite coating constructed by porous skeletons as an integrated anode for lithium-ion batteries

Authors: Yuge Fu, Qi Yang

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper reports a facile knife coating route to synthesize Cu-supported Si–C composite as an integrated anode for lithium-ion batteries. The composite displays a three dimensional (3D) network structure constructed by porous skeletons with Si nano-particles encapsulated in carbon matrix. The Cu-supported Si–C composite electrode demonstrates good capacity retention performance and rate performance. It delivers a high capacity of 1429 mA h g−1 at a current density of 1 A g−1 after 100 cycles and a capacity of 677 mA h g−1 at a high current density up to 20 A g−1. There are two facts responsible for its excellent electrochemical performance: (1) 3D network structure produced by volatilization of polymethylmethacrylate (PMMA) improves structure stability of the electrode; (2) abundant tunnels in skeletons made by volatilization of polyethylene glycol (PEG) increases diffusion of lithium-ions in the electrode.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.M. Tarascon, M. Amand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef J.M. Tarascon, M. Amand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef
2.
go back to reference M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRef M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRef
3.
go back to reference J.Y. Ji, H.X. Ji, L.L. Zhang, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Graphene encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 25, 4673–4677 (2013)CrossRef J.Y. Ji, H.X. Ji, L.L. Zhang, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Graphene encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 25, 4673–4677 (2013)CrossRef
4.
go back to reference M. Zhou, X.L. Li, B. Wang, Y.B. Zhang, J. Ning, Z.C. Xiao, X.H. Zhang, Y.H. Chang, H.J. Zhi, High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano. Lett. 15, 6222–6228 (2015)CrossRef M. Zhou, X.L. Li, B. Wang, Y.B. Zhang, J. Ning, Z.C. Xiao, X.H. Zhang, Y.H. Chang, H.J. Zhi, High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano. Lett. 15, 6222–6228 (2015)CrossRef
5.
go back to reference J.X. Wu, X.Y. Qin, H.R. Zhang, Y.B. He, B.H. Li, L. Ke, W. Lv, H.D. Du, Q.H. Yang, F.Y. Kang, Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 84, 434–443 (2015)CrossRef J.X. Wu, X.Y. Qin, H.R. Zhang, Y.B. He, B.H. Li, L. Ke, W. Lv, H.D. Du, Q.H. Yang, F.Y. Kang, Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 84, 434–443 (2015)CrossRef
6.
go back to reference N. Li, S.X. Jin, Q.Y. Liao, H. Cui, C.X. Wang, Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy 5, 105–115 (2014)CrossRef N. Li, S.X. Jin, Q.Y. Liao, H. Cui, C.X. Wang, Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy 5, 105–115 (2014)CrossRef
7.
go back to reference H.D. Chen, X.H. Hou, F.M. Chen, S.F. Wang, B. Wu, Q. Ru, H.Q. Qin, Y.C. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130, 433–440 (2018)CrossRef H.D. Chen, X.H. Hou, F.M. Chen, S.F. Wang, B. Wu, Q. Ru, H.Q. Qin, Y.C. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130, 433–440 (2018)CrossRef
8.
go back to reference H.D. Chen, Z.L. Wang, H.X. Hou, L.J. Fu, S.F. Wang, X.Q. Hu, H.Q. Qin, Y.P. Wu, Q. Ru, X. Liu, S.J. Hu, Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim. Acta 249, 113–121 (2017)CrossRef H.D. Chen, Z.L. Wang, H.X. Hou, L.J. Fu, S.F. Wang, X.Q. Hu, H.Q. Qin, Y.P. Wu, Q. Ru, X. Liu, S.J. Hu, Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim. Acta 249, 113–121 (2017)CrossRef
9.
go back to reference M. Li, X.H. Hou, Y.J. Sha, J. Wang, S.J. Hu, X. Liu, Z.P. Shao, Facile spray-drying/pyrolysis synthesis of coreeshell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J. Power Sour. 248, 721–728 (2014)CrossRef M. Li, X.H. Hou, Y.J. Sha, J. Wang, S.J. Hu, X. Liu, Z.P. Shao, Facile spray-drying/pyrolysis synthesis of coreeshell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J. Power Sour. 248, 721–728 (2014)CrossRef
10.
go back to reference L. Wang, C.X. Ding, L.C. Zhang, H.W. Xu, D.W. Zhang, T. Cheng, C.H. Chen, A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sour. 195, 5052–5056 (2010)CrossRef L. Wang, C.X. Ding, L.C. Zhang, H.W. Xu, D.W. Zhang, T. Cheng, C.H. Chen, A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sour. 195, 5052–5056 (2010)CrossRef
11.
go back to reference Q.L. Wu, T. Tran, W.Q. Lu, J. Wu, Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. J. Power Sour. 258, 39–45 (2014)CrossRef Q.L. Wu, T. Tran, W.Q. Lu, J. Wu, Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. J. Power Sour. 258, 39–45 (2014)CrossRef
12.
go back to reference X. Zhou, L.J. Wan, Y.G. Guo, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9, 2684–2688 (2013)CrossRef X. Zhou, L.J. Wan, Y.G. Guo, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 9, 2684–2688 (2013)CrossRef
13.
go back to reference T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012)CrossRef T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012)CrossRef
14.
go back to reference Z.X. Yang, G.D. Du, C.Q. Feng, S. Li, Z.X. Chen, P. Zhang, A.P. Guo, X.B. Yu, G.N. Chen, S.Z. Huang, H.K. Liu, Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochim. Acta 55, 5485–5491 (2010)CrossRef Z.X. Yang, G.D. Du, C.Q. Feng, S. Li, Z.X. Chen, P. Zhang, A.P. Guo, X.B. Yu, G.N. Chen, S.Z. Huang, H.K. Liu, Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochim. Acta 55, 5485–5491 (2010)CrossRef
15.
go back to reference K.Z. Cao, L.F. Jiao, H.Q. Liu, Y.C. Liu, Y.J. Wang, Z.P. Guo, H.T. Yuan, 3D hierarchical porous alpha-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 5, 1401–1421 (2015) K.Z. Cao, L.F. Jiao, H.Q. Liu, Y.C. Liu, Y.J. Wang, Z.P. Guo, H.T. Yuan, 3D hierarchical porous alpha-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 5, 1401–1421 (2015)
16.
go back to reference K.Z. Cao, L.F. Jiao, Y.C. Liu, H.Q. Liu, Y.J. Wang, H.T. Yuan, Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 25, 1082–1089 (2015)CrossRef K.Z. Cao, L.F. Jiao, Y.C. Liu, H.Q. Liu, Y.J. Wang, H.T. Yuan, Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 25, 1082–1089 (2015)CrossRef
17.
go back to reference Q.H. Tian, Y. Tian, Z.X. Zhang, L. Yang, S. Hirano, Three-dimensional tin dioxide/carbon composite constructed by hollow nanospheres with quasi-sandwich structures as improved anode materials for lithium-ion batteries. J. Power Sour. 306, 213–218 (2016)CrossRef Q.H. Tian, Y. Tian, Z.X. Zhang, L. Yang, S. Hirano, Three-dimensional tin dioxide/carbon composite constructed by hollow nanospheres with quasi-sandwich structures as improved anode materials for lithium-ion batteries. J. Power Sour. 306, 213–218 (2016)CrossRef
18.
go back to reference J.G. Tang, G.H. Chen, J. Yang, X.Y. Zhou, L.M. Zhou, B. Huang, Sillica-assistant synthesis of three-dimensional grapheme architecture and its application as anode material for lithium ion batteries. Nano Energy 8, 62–70 (2014)CrossRef J.G. Tang, G.H. Chen, J. Yang, X.Y. Zhou, L.M. Zhou, B. Huang, Sillica-assistant synthesis of three-dimensional grapheme architecture and its application as anode material for lithium ion batteries. Nano Energy 8, 62–70 (2014)CrossRef
19.
go back to reference Y.P. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, L.W. Yang, J.X. Zhong, Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochim. Acta 88, 766–771 (2013)CrossRef Y.P. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, L.W. Yang, J.X. Zhong, Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochim. Acta 88, 766–771 (2013)CrossRef
20.
go back to reference Y.P. Tang, L. Hong, Q.L. Wu, J.Q. Li, G.Y. Hou, H.Z. Cao, L.K. Wu, G.Q. Zheng, TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 195, 27–33 (2016)CrossRef Y.P. Tang, L. Hong, Q.L. Wu, J.Q. Li, G.Y. Hou, H.Z. Cao, L.K. Wu, G.Q. Zheng, TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 195, 27–33 (2016)CrossRef
21.
go back to reference Y.P. Tang, X.X. Tan, G.Y. Hou, G.Q. Zheng, Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 117, 172–178 (2014)CrossRef Y.P. Tang, X.X. Tan, G.Y. Hou, G.Q. Zheng, Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 117, 172–178 (2014)CrossRef
22.
go back to reference Y.P. Tang, X.X. Tan, G.Y. Hou, H.Z. Cao, G.Q. Zheng, Synthesis of dense nanocavities inside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries. Electrochim. Acta 78, 154–159 (2012)CrossRef Y.P. Tang, X.X. Tan, G.Y. Hou, H.Z. Cao, G.Q. Zheng, Synthesis of dense nanocavities inside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries. Electrochim. Acta 78, 154–159 (2012)CrossRef
23.
go back to reference P.X. Zhang, L. Huang, Y.L. Li, X.Z. Ren, L.B. Deng, Q.H. Yuan, Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries. Electrochim. Acta 192, 385–391 (2016)CrossRef P.X. Zhang, L. Huang, Y.L. Li, X.Z. Ren, L.B. Deng, Q.H. Yuan, Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries. Electrochim. Acta 192, 385–391 (2016)CrossRef
24.
go back to reference M. Zhang, Z.H. Sun, T.F. Zhang, D. Sui, Y.F. Ma, Y.S. Chen, Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon 102, 32–38 (2016)CrossRef M. Zhang, Z.H. Sun, T.F. Zhang, D. Sui, Y.F. Ma, Y.S. Chen, Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon 102, 32–38 (2016)CrossRef
25.
go back to reference M. Tian, W. Wang, Y. Liu, K.L. Jungjohann, C.T. Harris, Y.C. Lee, R.G. Yang, A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 11, 500–509 (2015)CrossRef M. Tian, W. Wang, Y. Liu, K.L. Jungjohann, C.T. Harris, Y.C. Lee, R.G. Yang, A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 11, 500–509 (2015)CrossRef
26.
go back to reference M.F. Hassan, M.M. Rahman, Z.P. Guo, Z.X. Chen, H.K. Liu, SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 20, 9707–9712 (2010)CrossRef M.F. Hassan, M.M. Rahman, Z.P. Guo, Z.X. Chen, H.K. Liu, SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. J. Mater. Chem. 20, 9707–9712 (2010)CrossRef
27.
go back to reference E. Radvanyi, E.D. Vito, W. Porcher, S.J.S. Larbi, An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. At. Spectrom. 29, 1120–1131 (2014)CrossRef E. Radvanyi, E.D. Vito, W. Porcher, S.J.S. Larbi, An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. At. Spectrom. 29, 1120–1131 (2014)CrossRef
28.
go back to reference R. Yi, J.T. Zai, F. Dai, M.L. Gordin, D.H. Wang, Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries. Electrochem. Commun. 36, 29–32 (2013)CrossRef R. Yi, J.T. Zai, F. Dai, M.L. Gordin, D.H. Wang, Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries. Electrochem. Commun. 36, 29–32 (2013)CrossRef
29.
go back to reference Z.X. Yang, G.D. Du, Q. Meng, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, R. Zeng, Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. 22, 5848–5854 (2012)CrossRef Z.X. Yang, G.D. Du, Q. Meng, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, R. Zeng, Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. 22, 5848–5854 (2012)CrossRef
30.
go back to reference Z.X. Yang, G.D. Du, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, H.K. Liu, TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Mater. Chem. 21, 8591–8596 (2011)CrossRef Z.X. Yang, G.D. Du, Z.P. Guo, X.B. Yu, Z.X. Chen, T.L. Guo, H.K. Liu, TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. J. Mater. Chem. 21, 8591–8596 (2011)CrossRef
31.
go back to reference W.H. Li, Z.Z. Yang, Y. Jiang, Z.R. Yu, L. Gu, Y. Yu, Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 78, 455–462 (2014)CrossRef W.H. Li, Z.Z. Yang, Y. Jiang, Z.R. Yu, L. Gu, Y. Yu, Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 78, 455–462 (2014)CrossRef
32.
go back to reference Y.T. Peng, C.T. Lo, Electrospun porous carbon nanofibers as lithium ion battery anodes. J. Solid State Electrochem. 19, 3401–3410 (2015)CrossRef Y.T. Peng, C.T. Lo, Electrospun porous carbon nanofibers as lithium ion battery anodes. J. Solid State Electrochem. 19, 3401–3410 (2015)CrossRef
33.
go back to reference C.D. Gu, Y.J. Mai, J.P. Zhou, Y.H. You, J.P. Tu, Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery. J. Power Sour. 214, 200–207 (2012)CrossRef C.D. Gu, Y.J. Mai, J.P. Zhou, Y.H. You, J.P. Tu, Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery. J. Power Sour. 214, 200–207 (2012)CrossRef
34.
go back to reference H.P. Zhao, C.Y. Jiang, X.M. He, J.G. Ren, C.R. Wan, A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu–Sn alloy process. Ionics 14, 113–120 (2008)CrossRef H.P. Zhao, C.Y. Jiang, X.M. He, J.G. Ren, C.R. Wan, A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu–Sn alloy process. Ionics 14, 113–120 (2008)CrossRef
35.
go back to reference X.H. Li, M.Q. Wu, T.T. Feng, Z.Q. Xu, J.G. Qin, C. Chen, C.Y. Tu, D.X. Wang, Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries. RSC Adv. 7, 48286–48293 (2017)CrossRef X.H. Li, M.Q. Wu, T.T. Feng, Z.Q. Xu, J.G. Qin, C. Chen, C.Y. Tu, D.X. Wang, Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries. RSC Adv. 7, 48286–48293 (2017)CrossRef
36.
go back to reference Y.F. Tong, Z. Xu, C. Liu, G.A. Zhang, J. Wang, Z.G. Wu, Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries. J. Power Sour. 247, 78–83 (2014)CrossRef Y.F. Tong, Z. Xu, C. Liu, G.A. Zhang, J. Wang, Z.G. Wu, Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries. J. Power Sour. 247, 78–83 (2014)CrossRef
37.
go back to reference Y.F. Wang, L.L. Lv, J. Wang, D. Yan, B.S. Geng, Z.G. Wu, R.F. Zhou, Influence of microstructure on electrochemical properties of Si/C multilayer thin-film anodes deposited using a sputtering method. Mater. Lett. 160, 210–212 (2015)CrossRef Y.F. Wang, L.L. Lv, J. Wang, D. Yan, B.S. Geng, Z.G. Wu, R.F. Zhou, Influence of microstructure on electrochemical properties of Si/C multilayer thin-film anodes deposited using a sputtering method. Mater. Lett. 160, 210–212 (2015)CrossRef
38.
go back to reference K. Fu, L.G. Xue, O. Yildiz, S. Li, H. Lee, Y. Li, G.J. Xu, L. Zhou, P.D. Bradford, X.W. Zhang, Effect of CVD carbon coating on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 2, 976–986 (2013)CrossRef K. Fu, L.G. Xue, O. Yildiz, S. Li, H. Lee, Y. Li, G.J. Xu, L. Zhou, P.D. Bradford, X.W. Zhang, Effect of CVD carbon coating on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 2, 976–986 (2013)CrossRef
39.
go back to reference J.Y. Yu, T. Sun, Q. Yang, J.X. Ma, Porous carbon networks containing Si and SnO2 as high performance anode materials for lithium-ion batteries. Mater. Lett. 184, 169–172 (2016)CrossRef J.Y. Yu, T. Sun, Q. Yang, J.X. Ma, Porous carbon networks containing Si and SnO2 as high performance anode materials for lithium-ion batteries. Mater. Lett. 184, 169–172 (2016)CrossRef
40.
go back to reference Y.D. Huang, Z.F. Dong, D.Z. Jia, Z.P. Guo, W. Cho, Preparation and characterization of core-shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material. Electrochim. Acta 56, 9233–9239 (2011)CrossRef Y.D. Huang, Z.F. Dong, D.Z. Jia, Z.P. Guo, W. Cho, Preparation and characterization of core-shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material. Electrochim. Acta 56, 9233–9239 (2011)CrossRef
41.
go back to reference Y.D. Huang, Z.F. Dong, D.Z. Jia, Z.P. Guo, W. Cho, Electrochemical properties of α-Fe2O3 /MWCNTs as anode materials for lithium-ion batteries. Solid State Ion. 201, 54–59 (2011)CrossRef Y.D. Huang, Z.F. Dong, D.Z. Jia, Z.P. Guo, W. Cho, Electrochemical properties of α-Fe2O3 /MWCNTs as anode materials for lithium-ion batteries. Solid State Ion. 201, 54–59 (2011)CrossRef
42.
go back to reference Y. Zhou, Q. Liu, D.B. Liu, H. Xie, G.X. Wu, W.F. Huang, Y.F. Tian, Q. He, A. Khalil, Y.A. Haleem, T. Xiang, W.S. Chu, C.W. Zou, L. Song, Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochim. Acta 174, 8–14 (2015)CrossRef Y. Zhou, Q. Liu, D.B. Liu, H. Xie, G.X. Wu, W.F. Huang, Y.F. Tian, Q. He, A. Khalil, Y.A. Haleem, T. Xiang, W.S. Chu, C.W. Zou, L. Song, Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochim. Acta 174, 8–14 (2015)CrossRef
Metadata
Title
Three dimensional network Si–C composite coating constructed by porous skeletons as an integrated anode for lithium-ion batteries
Authors
Yuge Fu
Qi Yang
Publication date
11-07-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9643-6

Other articles of this Issue 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Go to the issue