Skip to main content
Top
Published in: Wireless Networks 2/2021

10-11-2020

Threshold selection analysis of spectrum sensing for cognitive radio network with censoring based imperfect reporting channels

Authors: Alok Kumar, S. Pandit, G. Singh

Published in: Wireless Networks | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An appropriate threshold selection scheme is one of the main components to adjudicate the performance of energy detection spectrum sensing (EDSS) technique for cognitive radio network. In this paper, we have employed two different threshold selection approaches namely, the constant false-alarm rate (CFAR) and minimized error probability (MEP) and analyzed the threshold selection effects on the performance of cognitive user (CU) communication systems particularly, the total spectrum sensing error probability and throughput. We have derived the expressions and analyzed these performance parameters by considering an imperfect spectrum sensing and reporting channels in the cooperative spectrum sensing scenarios for additive white Gaussian noise (AWGN), Rayleigh and Nakagami-m fading environments. In addition, the censoring concept has been applied to the proposed system and compared its effect with that of the non-censoring based cognitive radio network (CRN) system under the perfect reporting (PR) and imperfect reporting (IR) channel. With the help of simulation, we have illustrated that the role of threshold selection approach is crucial to maximize the throughput and minimize the spectrum sensing error while considering the amount of error in the reporting channel. Further, from the results, the existence of trade-off between the spectrum sensing error probability and throughput is presented with threshold selection approaches. Moreover, it is also shown that there is need to switch among CFAR and MEP threshold selection approaches in the censoring scenario, to enhance the throughput and decrease the spectrum sensing error probability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, R. (2009). On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Transaction on Wireless Communication, 8(4), 2112–2120. Zhang, R. (2009). On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Transaction on Wireless Communication, 8(4), 2112–2120.
2.
go back to reference Pandit, S., & Singh, G. (2017). Spectrum sharing in cognitive radio networks: Medium access control protocol based approach. Switzerland: Springer. Pandit, S., & Singh, G. (2017). Spectrum sharing in cognitive radio networks: Medium access control protocol based approach. Switzerland: Springer.
3.
go back to reference Thakur, P., Singh, G., & Satashia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653. Thakur, P., Singh, G., & Satashia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653.
4.
go back to reference Parsons, S (2014). Literature review of cognitive radio spectrum sensing. EE 359 Project, California: Stanford University. Parsons, S (2014). Literature review of cognitive radio spectrum sensing. EE 359 Project, California: Stanford University.
5.
go back to reference Ali, A., & Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communication Surveys Tutorial, 19(2), 1277–1304. Ali, A., & Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communication Surveys Tutorial, 19(2), 1277–1304.
6.
go back to reference Guo, C., Jin, M., Guo, Q., & Li, Y. (2019). Anti-eigen value-based spectrum sensing for cognitive radio. IEEE Wireless Communication Letter, 8(2), 544–547. Guo, C., Jin, M., Guo, Q., & Li, Y. (2019). Anti-eigen value-based spectrum sensing for cognitive radio. IEEE Wireless Communication Letter, 8(2), 544–547.
7.
go back to reference Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceeding of the IEEE, 55(4), 523–531. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceeding of the IEEE, 55(4), 523–531.
8.
go back to reference Nafkha, A., & Aziz, B. (2014). Closed-form approximation for the performance of finite sample-based energy detection using correlated receiving antennas. IEEE Wireless Communications Letters, 3(6), 577–580. Nafkha, A., & Aziz, B. (2014). Closed-form approximation for the performance of finite sample-based energy detection using correlated receiving antennas. IEEE Wireless Communications Letters, 3(6), 577–580.
9.
go back to reference Atapattu, S., Tellambura, C., & Jiang, H. (2010). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Communications, 9(3), 1216–1225. Atapattu, S., Tellambura, C., & Jiang, H. (2010). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Communications, 9(3), 1216–1225.
10.
go back to reference Atapattu, S., Tellambura, C., Jiang, H., & Rajatheva, N. (2015). Unified analysis of low-SNR energy detection and threshold selection. IEEE Transactions on Vehicular Technology, 64(11), 5006–5019. Atapattu, S., Tellambura, C., Jiang, H., & Rajatheva, N. (2015). Unified analysis of low-SNR energy detection and threshold selection. IEEE Transactions on Vehicular Technology, 64(11), 5006–5019.
11.
go back to reference Yang, X., Lei, K., Peng, S., Hu, L., Li, S., & Cao, X. (2019). Threshold setting for multiple primary user spectrum sensing via spherical detector. IEEE Wireless Communication Letter, 8(2), 488–491. Yang, X., Lei, K., Peng, S., Hu, L., Li, S., & Cao, X. (2019). Threshold setting for multiple primary user spectrum sensing via spherical detector. IEEE Wireless Communication Letter, 8(2), 488–491.
12.
go back to reference Verma, G., & Sahu, O. P. (2016). Opportunistic selection of threshold in cognitive radio networks. Wireless Personal Communication, 92(2), 711–726. Verma, G., & Sahu, O. P. (2016). Opportunistic selection of threshold in cognitive radio networks. Wireless Personal Communication, 92(2), 711–726.
13.
go back to reference Atapattu, S., Tellambura, C., and Jiang, H. (2011).Spectrum sensing via energy detector in low SNR. Proceedings IEEE International Conference on Communications (ICC), Kyoto, Japan (pp.1–5). Atapattu, S., Tellambura, C., and Jiang, H. (2011).Spectrum sensing via energy detector in low SNR. Proceedings IEEE International Conference on Communications (ICC), Kyoto, Japan (pp.1–5).
14.
go back to reference Liang, Y. C., Zeng, Y., Peh, E., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transaction on Wireless Communication, 7(4), 1326–1337. Liang, Y. C., Zeng, Y., Peh, E., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transaction on Wireless Communication, 7(4), 1326–1337.
15.
go back to reference Renzo, M. D., Imbriglio, L., Graziosi, F., & Santucci, F. (2009). Distributed data fusion over correlated log-normal sensing and reporting channels: Application to cognitive radio networks. IEEE Transaction on Wireless Communication, 8(12), 5813–5821. Renzo, M. D., Imbriglio, L., Graziosi, F., & Santucci, F. (2009). Distributed data fusion over correlated log-normal sensing and reporting channels: Application to cognitive radio networks. IEEE Transaction on Wireless Communication, 8(12), 5813–5821.
16.
go back to reference Adelantado, F., Juan, A., & Verikoukis, C. (2010). Adaptive sensing user selection mechanism in cognitive wireless networks. IEEE Communication Letters, 14(9), 800–802. Adelantado, F., Juan, A., & Verikoukis, C. (2010). Adaptive sensing user selection mechanism in cognitive wireless networks. IEEE Communication Letters, 14(9), 800–802.
17.
go back to reference Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321. Nallagonda, S., Chandra, A., Roy, S. D., Kundu, S., Kukolev, P., & Prokes, A. (2016). Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels. International Journal of Electronics, 103(2), 297–321.
18.
go back to reference Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.
19.
go back to reference Sun, C., Zhang, W. and Ben, L. K. (2007). Cooperative spectrum sensing for cognitive radios under bandwidth constraints. Proceeding of IEEE Wireless Communications and Networking Conference, Kowloon (pp. 1–5). Sun, C., Zhang, W. and Ben, L. K. (2007). Cooperative spectrum sensing for cognitive radios under bandwidth constraints. Proceeding of IEEE Wireless Communications and Networking Conference, Kowloon (pp. 1–5).
20.
go back to reference Choi, Y. J., Park, W., Xin, Y., & Rangarajan, S. (2012). Throughput analysis of cooperative spectrum sensing in Rayleigh-faded cognitive radio systems. IET Communication, 6(9), 1104–1110.MathSciNet Choi, Y. J., Park, W., Xin, Y., & Rangarajan, S. (2012). Throughput analysis of cooperative spectrum sensing in Rayleigh-faded cognitive radio systems. IET Communication, 6(9), 1104–1110.MathSciNet
21.
go back to reference Nallagonda, S., Roy, S. D., Kundu, S., Ferrari, G., & Raheli, R. (2018). Censoring-based cooperative spectrum sensing with improved energy detectors and multiple antennas in fading channels. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 537–553. Nallagonda, S., Roy, S. D., Kundu, S., Ferrari, G., & Raheli, R. (2018). Censoring-based cooperative spectrum sensing with improved energy detectors and multiple antennas in fading channels. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 537–553.
22.
go back to reference Li, M., Alhussein, O., Sofotasios, P. C., Muhaidat, S., Yoo, P. D., Liang, J., & Wang, A. (2019). Censor-based cooperative multi-antenna spectrum sensing with imperfect reporting channels. IEEE Transactions on Sustainable Computing, 5(1), 48–60. Li, M., Alhussein, O., Sofotasios, P. C., Muhaidat, S., Yoo, P. D., Liang, J., & Wang, A. (2019). Censor-based cooperative multi-antenna spectrum sensing with imperfect reporting channels. IEEE Transactions on Sustainable Computing, 5(1), 48–60.
23.
go back to reference Koley, S., Mirza, V., Islam, S., & Mitra, D. (2015). Gradient-based real-time spectrum sensing at low SNR. IEEE Communication Letter, 19(3), 391–394. Koley, S., Mirza, V., Islam, S., & Mitra, D. (2015). Gradient-based real-time spectrum sensing at low SNR. IEEE Communication Letter, 19(3), 391–394.
24.
go back to reference Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communication, 8(12), 5761–5766. Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communication, 8(12), 5761–5766.
25.
go back to reference Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2019). Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: An energy detection approach. Wireless Network, 25(7), 391–3931. Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2019). Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: An energy detection approach. Wireless Network, 25(7), 391–3931.
26.
go back to reference Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2020). Intelligent threshold selection in fading environment of cognitive radio network: Advances in throughput and total error probability. International Journal of Communication Systems, 33(1), e4175. Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2020). Intelligent threshold selection in fading environment of cognitive radio network: Advances in throughput and total error probability. International Journal of Communication Systems, 33(1), e4175.
27.
go back to reference Peh, E. C. Y., Liang, Y. C., Guan, Y. L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299. Peh, E. C. Y., Liang, Y. C., Guan, Y. L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.
28.
go back to reference Liu, X., & Tan, X. (2012). Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio. International Journal of Communication Systems, 27(5), 1–16. Liu, X., & Tan, X. (2012). Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio. International Journal of Communication Systems, 27(5), 1–16.
29.
go back to reference Tuan, P. V., & Koo, I. (2016). Throughput maximization by optimizing detection thresholds in full-duplex cognitive radio networks. IET Communications, 10(11), 1355–1364. Tuan, P. V., & Koo, I. (2016). Throughput maximization by optimizing detection thresholds in full-duplex cognitive radio networks. IET Communications, 10(11), 1355–1364.
30.
go back to reference Lu, Y., Wang, D., & Fattouche, M. (2016). Cooperative spectrum-sensing algorithm in cognitive radio by simultaneous sensing and BER measurements. EURASIP Journal on Wireless Communications and Networking, 136, 1–22. Lu, Y., Wang, D., & Fattouche, M. (2016). Cooperative spectrum-sensing algorithm in cognitive radio by simultaneous sensing and BER measurements. EURASIP Journal on Wireless Communications and Networking, 136, 1–22.
31.
go back to reference Li, H., & Liu, C. (2018). Cross-layer optimization for full-duplex cognitive radio network with cooperative spectrum sensing. International Journal of Communication Systems, 32(5), 1–33. Li, H., & Liu, C. (2018). Cross-layer optimization for full-duplex cognitive radio network with cooperative spectrum sensing. International Journal of Communication Systems, 32(5), 1–33.
32.
go back to reference Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Transactions on Wireless Communications., 9(3), 1128–1138. Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Transactions on Wireless Communications., 9(3), 1128–1138.
33.
go back to reference Tang, W., Shakir, M. Z., Imran, M. A., Tafazolli, R., & Alouini, M. S. (2012). Throughput analysis for cognitive radio networks with multiple primary users and imperfect spectrum sensing. IET Communications, 6(17), 2787–2795.MathSciNet Tang, W., Shakir, M. Z., Imran, M. A., Tafazolli, R., & Alouini, M. S. (2012). Throughput analysis for cognitive radio networks with multiple primary users and imperfect spectrum sensing. IET Communications, 6(17), 2787–2795.MathSciNet
34.
go back to reference Yadav, K., Prasad, B., Bhowmick, A., Roy, S. D., & Kundu, S. (2017). Throughput performance under primary user emulation attack in cognitive radio networks. International Journal of Communication Systems, 30(18), 1–9. Yadav, K., Prasad, B., Bhowmick, A., Roy, S. D., & Kundu, S. (2017). Throughput performance under primary user emulation attack in cognitive radio networks. International Journal of Communication Systems, 30(18), 1–9.
35.
go back to reference Sharifi, M., Sharifi, A. A., & Niya, M. J. M. (2018). Cooperative spectrum sensing in the presence of primary user emulation attack in cognitive radio network: Multi-level hypotheses test approach. Wireless Network, 24(1), 61–68. Sharifi, M., Sharifi, A. A., & Niya, M. J. M. (2018). Cooperative spectrum sensing in the presence of primary user emulation attack in cognitive radio network: Multi-level hypotheses test approach. Wireless Network, 24(1), 61–68.
36.
go back to reference Althunibat, S., Renzo, M. D., and Granelli, F. (2013). Optimizing the K-out-of-N rule for cooperative spectrum sensing in cognitive radio networks. Proceeding of IEEE Global Communications Conference (GLOBECOM), Atlanta (pp. 1607–1611). Althunibat, S., Renzo, M. D., and Granelli, F. (2013). Optimizing the K-out-of-N rule for cooperative spectrum sensing in cognitive radio networks. Proceeding of IEEE Global Communications Conference (GLOBECOM), Atlanta (pp. 1607–1611).
37.
go back to reference Althunibat, S., Renzo, M. D., & Granelli, F. (2015). Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: An overview. Telecommunication Systems, 59(1), 77–91. Althunibat, S., Renzo, M. D., & Granelli, F. (2015). Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: An overview. Telecommunication Systems, 59(1), 77–91.
38.
go back to reference Hu, H., Zhang, H., & Liang, Y. C. (2016). On the spectrum-and energy-efficiency tradeoff in cognitive radio networks. IEEE Transactions on Communications, 64(2), 490–501. Hu, H., Zhang, H., & Liang, Y. C. (2016). On the spectrum-and energy-efficiency tradeoff in cognitive radio networks. IEEE Transactions on Communications, 64(2), 490–501.
39.
go back to reference Bhowmick, A., Roy, S. D., & Kundu, S. (2015). Sensing throughput trade-off for an energy efficient cognitive radio network under faded sensing and reporting channel. International Journal of Communication Systems, 29(7), 1208–1218. Bhowmick, A., Roy, S. D., & Kundu, S. (2015). Sensing throughput trade-off for an energy efficient cognitive radio network under faded sensing and reporting channel. International Journal of Communication Systems, 29(7), 1208–1218.
40.
go back to reference Najimi, M. (2018). Sensing time optimization and sensor selection in multi-channel multi-antenna wireless cognitive sensor networks. IET Communications, 12(6), 795–801. Najimi, M. (2018). Sensing time optimization and sensor selection in multi-channel multi-antenna wireless cognitive sensor networks. IET Communications, 12(6), 795–801.
41.
go back to reference Zhao, N., Pu, F., Xu, X., & Chen, N. (2013). Optimization of multi-channel cooperative sensing in cognitive radio networks. IET Communications, 7(12), 1177–1190. Zhao, N., Pu, F., Xu, X., & Chen, N. (2013). Optimization of multi-channel cooperative sensing in cognitive radio networks. IET Communications, 7(12), 1177–1190.
42.
go back to reference Gahane, L., & Sharma, P. K. (2017). Performance of improved energy detector with cognitive radio mobility and imperfect channel state information. IET Communications, 11(12), 1857–1863. Gahane, L., & Sharma, P. K. (2017). Performance of improved energy detector with cognitive radio mobility and imperfect channel state information. IET Communications, 11(12), 1857–1863.
43.
go back to reference Firouzabadi, A. D., & Rabiei, A. M. (2015). Sensing-throughput optimization for multichannel cooperative spectrum sensing with imperfect reporting channels. IET Communications, 9(18), 2188–2196. Firouzabadi, A. D., & Rabiei, A. M. (2015). Sensing-throughput optimization for multichannel cooperative spectrum sensing with imperfect reporting channels. IET Communications, 9(18), 2188–2196.
44.
go back to reference Chaudhari, S., Lundén, J., Koivunen, V., & Poor, H. V. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.MathSciNetMATH Chaudhari, S., Lundén, J., Koivunen, V., & Poor, H. V. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.MathSciNetMATH
45.
go back to reference Sakran, H., & Shokair, M. (2013). Hard and softened combination for cooperative spectrum sensing over imperfect channels in cognitive radio networks. Telecommunication System, 52(1), 61–71. Sakran, H., & Shokair, M. (2013). Hard and softened combination for cooperative spectrum sensing over imperfect channels in cognitive radio networks. Telecommunication System, 52(1), 61–71.
46.
go back to reference Yilmaz, H. B., Tugcu, T., & Alagoz, F. (2014). Novel quantization-based spectrum sensing scheme under imperfect reporting channel and false reports. International Journal of Communication Systems, 27(10), 1459–1475. Yilmaz, H. B., Tugcu, T., & Alagoz, F. (2014). Novel quantization-based spectrum sensing scheme under imperfect reporting channel and false reports. International Journal of Communication Systems, 27(10), 1459–1475.
47.
go back to reference Mi, Y., Lu, G., Li, Y., & Bao, Z. (2019). A novel semi-soft decision scheme for cooperative spectrum sensing in cognitive radio networks. Sensors Networks, 19(11), 1–12. Mi, Y., Lu, G., Li, Y., & Bao, Z. (2019). A novel semi-soft decision scheme for cooperative spectrum sensing in cognitive radio networks. Sensors Networks, 19(11), 1–12.
48.
go back to reference Bae, S., & Kim, H. (2016). Robust cooperative sensing with ON/OFF signaling over imperfect reporting channels. IEEE Transactions on Industrial Informatics, 12(6), 2196–2205. Bae, S., & Kim, H. (2016). Robust cooperative sensing with ON/OFF signaling over imperfect reporting channels. IEEE Transactions on Industrial Informatics, 12(6), 2196–2205.
49.
go back to reference Liu, X., Zhang, X., Ding, H., & Peng, B. (2019). Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network. Ad Hoc Networks, 94, 101968. Liu, X., Zhang, X., Ding, H., & Peng, B. (2019). Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network. Ad Hoc Networks, 94, 101968.
50.
go back to reference Oh, D. C., & Lee, Y. H. (2010). Cooperative spectrum sensing with imperfect feedback channel in the cognitive radio systems. International Journal of Communication Systems, 23, 763–779. Oh, D. C., & Lee, Y. H. (2010). Cooperative spectrum sensing with imperfect feedback channel in the cognitive radio systems. International Journal of Communication Systems, 23, 763–779.
51.
go back to reference Ghorbel, M. B., Nam, H., & Alouini, M. S. (2015). Soft cooperative spectrum sensing performance under imperfect and non-identical reporting channels. IEEE Communications Letters, 19(2), 227–230. Ghorbel, M. B., Nam, H., & Alouini, M. S. (2015). Soft cooperative spectrum sensing performance under imperfect and non-identical reporting channels. IEEE Communications Letters, 19(2), 227–230.
52.
go back to reference Li, M., Wang, A., & Pan, J. S. (2016). Cognitive Wireless Networks Using the CSS Technology. Cham: Springer. Li, M., Wang, A., & Pan, J. S. (2016). Cognitive Wireless Networks Using the CSS Technology. Cham: Springer.
53.
go back to reference Jiang, R., & Chen, B. (2005). Fusion of censored decisions in wireless sensor networks. IEEE Transaction on Wireless Communication, 4(6), 2668–2673. Jiang, R., & Chen, B. (2005). Fusion of censored decisions in wireless sensor networks. IEEE Transaction on Wireless Communication, 4(6), 2668–2673.
54.
go back to reference Atmaca, S., Sayli, O., Yuan, J., & Kavak, A. (2017). Throughput maximization of CSMA in cognitive radio networks with cooperative spectrum sensing. Wireless Personal Communications, 92(4), 1473–1492. Atmaca, S., Sayli, O., Yuan, J., & Kavak, A. (2017). Throughput maximization of CSMA in cognitive radio networks with cooperative spectrum sensing. Wireless Personal Communications, 92(4), 1473–1492.
55.
go back to reference Liu, X., Zhong, W. Z., & Chen, K. Q. (2015). Optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing in cognitive radio network. Journal of Central South University, 22(7), 2646–2654. Liu, X., Zhong, W. Z., & Chen, K. Q. (2015). Optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing in cognitive radio network. Journal of Central South University, 22(7), 2646–2654.
56.
go back to reference Juarez, M. C., & Ghogho, M. (2011). Spectrum sensing and throughput trade-off in cognitive radio under outage constraints over Nakagami fading. IEEE Communications Letters, 15(10), 1110–1113. Juarez, M. C., & Ghogho, M. (2011). Spectrum sensing and throughput trade-off in cognitive radio under outage constraints over Nakagami fading. IEEE Communications Letters, 15(10), 1110–1113.
57.
go back to reference Rabiee, R., and Li, K. H. (2013). Throughput optimization of double-threshold based improved energy detection in cooperative sensing over imperfect reporting channels. In 2013 Proceeding of 9th International Conference on Information, Communication and Signal Processing, Tainan, (pp. 1–5). Rabiee, R., and Li, K. H. (2013). Throughput optimization of double-threshold based improved energy detection in cooperative sensing over imperfect reporting channels. In 2013 Proceeding of 9th International Conference on Information, Communication and Signal Processing, Tainan, (pp. 1–5).
58.
go back to reference RabieeLi, R. K. H. (2015). Performance evaluation of improved double-threshold energy detector over Rayleigh-faded sensing and imperfect reporting channels. Physical Communication, 17, 58–71. RabieeLi, R. K. H. (2015). Performance evaluation of improved double-threshold energy detector over Rayleigh-faded sensing and imperfect reporting channels. Physical Communication, 17, 58–71.
59.
go back to reference Charan, C., & Pandey, R. (2018). Intelligent selection of threshold in covariance based spectrum sensing for cognitive radio networks. Wireless Network, 24(8), 3267–3279. Charan, C., & Pandey, R. (2018). Intelligent selection of threshold in covariance based spectrum sensing for cognitive radio networks. Wireless Network, 24(8), 3267–3279.
60.
go back to reference Banavathu, N. R., & Khan, M. Z. A. (2019). Optimization of k-out-of-N rule for heterogeneous cognitive radio networks. IEEE Signal Processing. Letter, 26(3), 445–449. Banavathu, N. R., & Khan, M. Z. A. (2019). Optimization of k-out-of-N rule for heterogeneous cognitive radio networks. IEEE Signal Processing. Letter, 26(3), 445–449.
61.
go back to reference Isukapalli, Y., & Rao, B. D. (2008). An analytically tractable approximation for the Gaussian Q-function. IEEE Communications Letters, 12(9), 669–671. Isukapalli, Y., & Rao, B. D. (2008). An analytically tractable approximation for the Gaussian Q-function. IEEE Communications Letters, 12(9), 669–671.
Metadata
Title
Threshold selection analysis of spectrum sensing for cognitive radio network with censoring based imperfect reporting channels
Authors
Alok Kumar
S. Pandit
G. Singh
Publication date
10-11-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2021
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02488-9

Other articles of this Issue 2/2021

Wireless Networks 2/2021 Go to the issue