Skip to main content
Top
Published in: Cellulose 8/2021

27-03-2021 | Review Paper

Towards a cellulose-based society: opportunities and challenges

Authors: Jinwu Wang, Lu Wang, Douglas J. Gardner, Stephen M. Shaler, Zhiyong Cai

Published in: Cellulose | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current materials predominately come from fossil feedstocks and minerals. The pressures from climate change and plastic pollution challenge us to develop a bioeconomy, replacing petroleum-based products with bio-based and biodegradable products. Cellulose emerges as a versatile biopolymer to make hydrogels for absorbents, aerogels for insulation, membranes for filters, films for packaging, and fibers for textiles and reinforcements. Wood-based cellulose is increasingly perceived by relevant stakeholders to be renewable, biodegradable, and sustainable. Can the properties of cellulose-based materials compete with conventional synthetic materials? Knowledge and discoveries concerning cellulose properties and applications are scattered throughout the scientific literature base. This paper surveys the mechanical properties of cellulose-based materials in the literature using tensile properties as indicators and visualizes the data compared with other competitive materials. The goal is to provide insights into the potential and challenges of using cellulose-based products to replace synthetic materials for a sustainable society.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adusumali R, Reifferscheid M, Weber H et al (2006) Mechanical properties of regenerated cellulose fibres for composites. Wiley, Hoboken, pp 119–125 Adusumali R, Reifferscheid M, Weber H et al (2006) Mechanical properties of regenerated cellulose fibres for composites. Wiley, Hoboken, pp 119–125
go back to reference Ambrosio-Martín J, Lopez-Rubio A, Fabra MJ et al (2015) Assessment of ball milling methodology to develop polylactide-bacterial cellulose nanocrystals nanocomposites. J Appl Polym Sci 132:1–8CrossRef Ambrosio-Martín J, Lopez-Rubio A, Fabra MJ et al (2015) Assessment of ball milling methodology to develop polylactide-bacterial cellulose nanocrystals nanocomposites. J Appl Polym Sci 132:1–8CrossRef
go back to reference Amiralian N, Annamalai PK, Garvey CJ et al (2017) High aspect ratio nanocellulose from an extremophile spinifex grass by controlled acid hydrolysis. Cellulose 24:3753–3766CrossRef Amiralian N, Annamalai PK, Garvey CJ et al (2017) High aspect ratio nanocellulose from an extremophile spinifex grass by controlled acid hydrolysis. Cellulose 24:3753–3766CrossRef
go back to reference Ansari F, Galland S, Johansson M et al (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A Appl Sci Manuf 63:35–44CrossRef Ansari F, Galland S, Johansson M et al (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A Appl Sci Manuf 63:35–44CrossRef
go back to reference Ansari F, Sjöstedt A, Larsson PT et al (2015) Hierarchical wood cellulose fiber/epoxy biocomposites–materials design of fiber porosity and nanostructure. Compos A Appl Sci Manuf 74:60–68CrossRef Ansari F, Sjöstedt A, Larsson PT et al (2015) Hierarchical wood cellulose fiber/epoxy biocomposites–materials design of fiber porosity and nanostructure. Compos A Appl Sci Manuf 74:60–68CrossRef
go back to reference Ansell M, Mwaikambo L (2009) The structure of cotton and other plant fibres. In: handbook of textile fibre structure. Elsevier pp 62–94 Ansell M, Mwaikambo L (2009) The structure of cotton and other plant fibres. In: handbook of textile fibre structure. Elsevier pp 62–94
go back to reference Arbelaiz A, Fernandez B, Cantero G et al (2005a) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A Appl Sci Manuf 36:1637–1644CrossRef Arbelaiz A, Fernandez B, Cantero G et al (2005a) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A Appl Sci Manuf 36:1637–1644CrossRef
go back to reference Arbelaiz A, Fernandez B, Ramos J et al (2005b) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65:1582–1592CrossRef Arbelaiz A, Fernandez B, Ramos J et al (2005b) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65:1582–1592CrossRef
go back to reference Ashori A, Menbari S, Bahrami R (2016) Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. J Ind Eng Chem 38:37–42CrossRef Ashori A, Menbari S, Bahrami R (2016) Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. J Ind Eng Chem 38:37–42CrossRef
go back to reference Ausias G, Bourmaud A, Coroller G, Baley C (2013) Study of the fibre morphology stability in polypropylene-flax composites. Polym Degrad Stab 98:1216–1224CrossRef Ausias G, Bourmaud A, Coroller G, Baley C (2013) Study of the fibre morphology stability in polypropylene-flax composites. Polym Degrad Stab 98:1216–1224CrossRef
go back to reference Bachmann J, Wiedemann M, Wierach P (2018) Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres. Aerospace 5:107CrossRef Bachmann J, Wiedemann M, Wierach P (2018) Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres. Aerospace 5:107CrossRef
go back to reference Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21:347–356CrossRef Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21:347–356CrossRef
go back to reference Bar M, Alagirusamy R, Das A (2018) Properties of flax-polypropylene composites made through hybrid yarn and film stacking methods. Compos Struct 197:63–71CrossRef Bar M, Alagirusamy R, Das A (2018) Properties of flax-polypropylene composites made through hybrid yarn and film stacking methods. Compos Struct 197:63–71CrossRef
go back to reference Bar M, Das A, Alagirusamy R (2019) Influence of flax/polypropylene distribution in twistless thermally bonded rovings on their composite properties. Polym Compos 40:4300–4310CrossRef Bar M, Das A, Alagirusamy R (2019) Influence of flax/polypropylene distribution in twistless thermally bonded rovings on their composite properties. Polym Compos 40:4300–4310CrossRef
go back to reference Barber AH, Cohen SR, Eitan A et al (2006) Fracture transitions at a carbon-nanotube/polymer interface. Adv Mater 18:83–87CrossRef Barber AH, Cohen SR, Eitan A et al (2006) Fracture transitions at a carbon-nanotube/polymer interface. Adv Mater 18:83–87CrossRef
go back to reference Behabtu N, Young CC, Tsentalovich DE et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186PubMedCrossRef Behabtu N, Young CC, Tsentalovich DE et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186PubMedCrossRef
go back to reference Belgacem M, Bataille P, Sapieha S (1994) Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J Appl Polym Sci 53:379–385CrossRef Belgacem M, Bataille P, Sapieha S (1994) Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J Appl Polym Sci 53:379–385CrossRef
go back to reference Bhat N, Makwana D (1988) Effects of swelling treatments on fine structure and mechanical properties of cellophane film. Text Res J 58:233–238CrossRef Bhat N, Makwana D (1988) Effects of swelling treatments on fine structure and mechanical properties of cellophane film. Text Res J 58:233–238CrossRef
go back to reference Bhattacharyya S, Salvetat J-P, Saboungi M-L (2006) Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes. Appl Phys Lett 88:233119CrossRef Bhattacharyya S, Salvetat J-P, Saboungi M-L (2006) Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes. Appl Phys Lett 88:233119CrossRef
go back to reference Borja Y, Rieß G, Lederer K (2006) Synthesis and characterization of polypropylene reinforced with cellulose I and II fibers. J Appl Polym Sci 101:364–369CrossRef Borja Y, Rieß G, Lederer K (2006) Synthesis and characterization of polypropylene reinforced with cellulose I and II fibers. J Appl Polym Sci 101:364–369CrossRef
go back to reference Bourmaud A, Beaugrand J, Shah DU et al (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408CrossRef Bourmaud A, Beaugrand J, Shah DU et al (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408CrossRef
go back to reference Bunsell AR (2009) Handbook of tensile properties of textile and technical fibres. ElsevierCrossRef Bunsell AR (2009) Handbook of tensile properties of textile and technical fibres. ElsevierCrossRef
go back to reference Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254CrossRef Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254CrossRef
go back to reference Cao L, Su D, Su Z, Chen X (2014) Fabrication of multiwalled carbon nanotube/polypropylene conductive fibrous membranes by melt electrospinning. Ind Eng Chem Res 53:2308–2317CrossRef Cao L, Su D, Su Z, Chen X (2014) Fabrication of multiwalled carbon nanotube/polypropylene conductive fibrous membranes by melt electrospinning. Ind Eng Chem Res 53:2308–2317CrossRef
go back to reference Cazón P, Vázquez M, Velazquez G (2018) Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym Test 69:536–544CrossRef Cazón P, Vázquez M, Velazquez G (2018) Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym Test 69:536–544CrossRef
go back to reference Chen C, Bu X, Feng Q, Li D (2018) Cellulose nanofiber/carbon nanotube conductive nano-network as a reinforcement template for polydimethylsiloxane nanocomposite. Polymers 10:1000PubMedCentralCrossRef Chen C, Bu X, Feng Q, Li D (2018) Cellulose nanofiber/carbon nanotube conductive nano-network as a reinforcement template for polydimethylsiloxane nanocomposite. Polymers 10:1000PubMedCentralCrossRef
go back to reference Chen W, Tao X, Xue P, Cheng X (2005) Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 252:1404–1409CrossRef Chen W, Tao X, Xue P, Cheng X (2005) Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 252:1404–1409CrossRef
go back to reference Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602CrossRef Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602CrossRef
go back to reference Cicala G, Cristaldi G, Recca G et al (2009) Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Mater Des 30:2538–2542CrossRef Cicala G, Cristaldi G, Recca G et al (2009) Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Mater Des 30:2538–2542CrossRef
go back to reference Claramunt J, Ventura H, Fernández-Carrasco LJ, Ardanuy M (2017) Tensile and flexural properties of cement composites reinforced with flax nonwoven fabrics. Materials 10:215PubMedCentralCrossRef Claramunt J, Ventura H, Fernández-Carrasco LJ, Ardanuy M (2017) Tensile and flexural properties of cement composites reinforced with flax nonwoven fabrics. Materials 10:215PubMedCentralCrossRef
go back to reference Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4:327–339CrossRef Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4:327–339CrossRef
go back to reference Cunniff PM, Fossey SA, Auerbach MA et al (1994) Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym Adv Technol 5:401–410CrossRef Cunniff PM, Fossey SA, Auerbach MA et al (1994) Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym Adv Technol 5:401–410CrossRef
go back to reference Dalton AB, Collins S, Munoz E et al (2003) Super-tough carbon-nanotube fibres. Nature 423:703–703PubMedCrossRef Dalton AB, Collins S, Munoz E et al (2003) Super-tough carbon-nanotube fibres. Nature 423:703–703PubMedCrossRef
go back to reference Derbali I, Terekhina S, Guillaumat L, Ouagne P (2016) Rapid manufacturing of composite structures made of fabric flax/polypropylene. In: ECCM17—17th European conference on composite materials. Munich, Germany, pp 1–9 Derbali I, Terekhina S, Guillaumat L, Ouagne P (2016) Rapid manufacturing of composite structures made of fabric flax/polypropylene. In: ECCM17—17th European conference on composite materials. Munich, Germany, pp 1–9
go back to reference Di J, Hu D, Chen H et al (2012) Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 6:5457–5464PubMedCrossRef Di J, Hu D, Chen H et al (2012) Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 6:5457–5464PubMedCrossRef
go back to reference Diallo AK, Jahier C, Drolet R et al (2019) Cellulose filaments reinforced low-density polyethylene. Polym Compos 40:16–23CrossRef Diallo AK, Jahier C, Drolet R et al (2019) Cellulose filaments reinforced low-density polyethylene. Polym Compos 40:16–23CrossRef
go back to reference Du N, Yang Z, Liu XY et al (2011) Structural origin of the strain-hardening of spider silk. Adv Func Mater 21:772–778CrossRef Du N, Yang Z, Liu XY et al (2011) Structural origin of the strain-hardening of spider silk. Adv Func Mater 21:772–778CrossRef
go back to reference Du S, Li J, Zhang J, Wang X (2015) Microstructure and mechanical properties of silk from different components of the Antheraea pernyi cocoon. Mater Des 1980–2015(65):766–771CrossRef Du S, Li J, Zhang J, Wang X (2015) Microstructure and mechanical properties of silk from different components of the Antheraea pernyi cocoon. Mater Des 1980–2015(65):766–771CrossRef
go back to reference Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Coll Interf Sci 29:1–8CrossRef Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Coll Interf Sci 29:1–8CrossRef
go back to reference EPA (2019) Advancing sustainable materials management: 2017 fact sheet assessing trends in material generation, recycling, composting, combustion with energy recovery and landfilling in the United States. United State Environmental Protection Agency (EPA), Washington, DC EPA (2019) Advancing sustainable materials management: 2017 fact sheet assessing trends in material generation, recycling, composting, combustion with energy recovery and landfilling in the United States. United State Environmental Protection Agency (EPA), Washington, DC
go back to reference Etcheverry M, Barbosa SE (2012) Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement. Materials 5:1084–1113PubMedPubMedCentralCrossRef Etcheverry M, Barbosa SE (2012) Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement. Materials 5:1084–1113PubMedPubMedCentralCrossRef
go back to reference Everitt NM, Aboulkhair NT, Clifford MJ (2013) Looking for links between natural fibres’ structures and their physical properties. UK, HindawiCrossRef Everitt NM, Aboulkhair NT, Clifford MJ (2013) Looking for links between natural fibres’ structures and their physical properties. UK, HindawiCrossRef
go back to reference Fahma F, Hori N, Iwata T, Takemura A (2017) PVA nanocomposites reinforced with cellulose nanofibers from oil palm empty fruit bunches (OPEFBs). Emirates J Food Agric 29(5):323–329 Fahma F, Hori N, Iwata T, Takemura A (2017) PVA nanocomposites reinforced with cellulose nanofibers from oil palm empty fruit bunches (OPEFBs). Emirates J Food Agric 29(5):323–329
go back to reference FAO (2017) FAO yearbook of forest products 2017. Food And Agriculture Organization Of The United Nations, Rome FAO (2017) FAO yearbook of forest products 2017. Food And Agriculture Organization Of The United Nations, Rome
go back to reference Franciszczak P, Merijs-Meri R, Kalniņš K et al (2017) Short-fibre hybrid polypropylene composites reinforced with PET and rayon fibres–effects of SSP and interphase tailoring. Compos Struct 181:121–137CrossRef Franciszczak P, Merijs-Meri R, Kalniņš K et al (2017) Short-fibre hybrid polypropylene composites reinforced with PET and rayon fibres–effects of SSP and interphase tailoring. Compos Struct 181:121–137CrossRef
go back to reference Fu Q, Medina L, Li Y et al (2017) Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl Mater Interf 9:36154–36163CrossRef Fu Q, Medina L, Li Y et al (2017) Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl Mater Interf 9:36154–36163CrossRef
go back to reference Ganster J, Fink H-P, Pinnow M (2006) High-tenacity man-made cellulose fibre reinforced thermoplastics–injection moulding compounds with polypropylene and alternative matrices. Compos A Appl Sci Manuf 37:1796–1804CrossRef Ganster J, Fink H-P, Pinnow M (2006) High-tenacity man-made cellulose fibre reinforced thermoplastics–injection moulding compounds with polypropylene and alternative matrices. Compos A Appl Sci Manuf 37:1796–1804CrossRef
go back to reference Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose− NaOH aqueous solutions. Biomacromol 9:269–277CrossRef Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose− NaOH aqueous solutions. Biomacromol 9:269–277CrossRef
go back to reference Geethamma V, Joseph R, Thomas S (1995) Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J Appl Polym Sci 55:583–594CrossRef Geethamma V, Joseph R, Thomas S (1995) Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J Appl Polym Sci 55:583–594CrossRef
go back to reference Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interf 9:2749–2766CrossRef Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interf 9:2749–2766CrossRef
go back to reference Gindl W, Keckes J (2006) Strain hardening in regenerated cellulose fibres. Compos Sci Technol 66:2049–2053CrossRef Gindl W, Keckes J (2006) Strain hardening in regenerated cellulose fibres. Compos Sci Technol 66:2049–2053CrossRef
go back to reference Gindl W, Keckes J (2007) Drawing of self-reinforced cellulose films. J Appl Polym Sci 103:2703–2708CrossRef Gindl W, Keckes J (2007) Drawing of self-reinforced cellulose films. J Appl Polym Sci 103:2703–2708CrossRef
go back to reference Gindl W, Reifferscheid M, Adusumalli R-B et al (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799CrossRef Gindl W, Reifferscheid M, Adusumalli R-B et al (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799CrossRef
go back to reference Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300–2313CrossRef Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300–2313CrossRef
go back to reference González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef
go back to reference Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61CrossRef Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61CrossRef
go back to reference Gosline J, Guerette P, Ortlepp C, Savage K (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303PubMedCrossRef Gosline J, Guerette P, Ortlepp C, Savage K (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303PubMedCrossRef
go back to reference Hamedi MM, Hajian A, Fall AB et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476PubMedCrossRef Hamedi MM, Hajian A, Fall AB et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476PubMedCrossRef
go back to reference Han JS (1998) Properties of nonwood fibers. The Korean Society of Science and Technology Seoul, Korea, pp 3–12 Han JS (1998) Properties of nonwood fibers. The Korean Society of Science and Technology Seoul, Korea, pp 3–12
go back to reference Heijenrath R, Peijs T (1996) Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Advanced Compos Lett 5:096369359600500303CrossRef Heijenrath R, Peijs T (1996) Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Advanced Compos Lett 5:096369359600500303CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRef
go back to reference Huan S, Bai L, Cheng W, Han G (2016) Manufacture of electrospun all-aqueous poly (vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure. Polymer 92:25–35CrossRef Huan S, Bai L, Cheng W, Han G (2016) Manufacture of electrospun all-aqueous poly (vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure. Polymer 92:25–35CrossRef
go back to reference Hubbe MA, Grigsby W (2020) From nanocellulose to wood particles: a review of particle size vs. the properties of plastic composites reinforced with cellulose-based entities. BioResources 15:2030–2081CrossRef Hubbe MA, Grigsby W (2020) From nanocellulose to wood particles: a review of particle size vs. the properties of plastic composites reinforced with cellulose-based entities. BioResources 15:2030–2081CrossRef
go back to reference Huque QM, Islam R, Islam MM et al (2012) Preparation of rayon fiber-reinforced polypropylene composites by extrusion techniques. Polym Plast Technol Eng 51:116–121CrossRef Huque QM, Islam R, Islam MM et al (2012) Preparation of rayon fiber-reinforced polypropylene composites by extrusion techniques. Polym Plast Technol Eng 51:116–121CrossRef
go back to reference Isogai A (2017) Determination of length and width of nanocelluloses from their dilute dispersions. In: Advances in Pulp and Paper Research, Oxford 2017, Trans. of the XVIth Fund. Res. Symp. Oxford, 2017, (W. Batchelor and D. Söderberg, eds), pp 801–811, FRC, Manchester, 2018 Isogai A (2017) Determination of length and width of nanocelluloses from their dilute dispersions. In: Advances in Pulp and Paper Research, Oxford 2017, Trans. of the XVIth Fund. Res. Symp. Oxford, 2017, (W. Batchelor and D. Söderberg, eds), pp 801–811, FRC, Manchester, 2018
go back to reference Iwamoto S, Lee S-H, Endo T (2014a) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73CrossRef Iwamoto S, Lee S-H, Endo T (2014a) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73CrossRef
go back to reference Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014b) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21:1573–1580CrossRef Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014b) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21:1573–1580CrossRef
go back to reference Jalal Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromol 12:617–624CrossRef Jalal Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromol 12:617–624CrossRef
go back to reference Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2008) Mechanical properties of wetlaid lyocell and hybrid fiber-reinforced composites with polypropylene. Compos A Appl Sci Manuf 39:470–477CrossRef Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2008) Mechanical properties of wetlaid lyocell and hybrid fiber-reinforced composites with polypropylene. Compos A Appl Sci Manuf 39:470–477CrossRef
go back to reference Jonoobi M, Mathew AP, Abdi MM et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997CrossRef Jonoobi M, Mathew AP, Abdi MM et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991–997CrossRef
go back to reference Kannan TG, Wu CM, Cheng KB, Wang CY (2013) Effect of reinforcement on the mechanical and thermal properties of flax/polypropylene interwoven fabric composites. J Ind Text 42:417–433CrossRef Kannan TG, Wu CM, Cheng KB, Wang CY (2013) Effect of reinforcement on the mechanical and thermal properties of flax/polypropylene interwoven fabric composites. J Ind Text 42:417–433CrossRef
go back to reference Khonsari A, Taghiyari HR, Karimi A, Tajvidi M (2015) Study on the effects of wood flour geometry on physical and mechanical properties of wood-plastic composites. Maderas Ciencia y tecnología 17:545–558 Khonsari A, Taghiyari HR, Karimi A, Tajvidi M (2015) Study on the effects of wood flour geometry on physical and mechanical properties of wood-plastic composites. Maderas Ciencia y tecnología 17:545–558
go back to reference Khoshkava V, Kamal M (2014) Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol 261:288–298CrossRef Khoshkava V, Kamal M (2014) Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol 261:288–298CrossRef
go back to reference Kim HC, Kim D, Lee JY et al (2019a) Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. Int J Precis Eng Manuf Green Technol 6:567–575CrossRef Kim HC, Kim D, Lee JY et al (2019a) Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. Int J Precis Eng Manuf Green Technol 6:567–575CrossRef
go back to reference Kim S-H, Kim E-S, Choi K et al (2019b) Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation. Cellulose 26:1085–1097CrossRef Kim S-H, Kim E-S, Choi K et al (2019b) Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation. Cellulose 26:1085–1097CrossRef
go back to reference Kinloch IA, Suhr J, Lou J et al (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–553PubMedCrossRef Kinloch IA, Suhr J, Lou J et al (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–553PubMedCrossRef
go back to reference Kiziltas EE, Kiziltas A, Gardner DJ (2016) Rheological and mechanical properties of ultra-fine cellulose-filled thermoplastic epoxy composites. BioResources 11:4770–4780 Kiziltas EE, Kiziltas A, Gardner DJ (2016) Rheological and mechanical properties of ultra-fine cellulose-filled thermoplastic epoxy composites. BioResources 11:4770–4780
go back to reference Koga H, Saito T, Kitaoka T et al (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165CrossRef Koga H, Saito T, Kitaoka T et al (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165CrossRef
go back to reference Kunchi C, Venkateshan KC, Adusumalli RB (2018) Effect of scalp position on tensile properties of single hair fibers. Int J Trichol 10:218CrossRef Kunchi C, Venkateshan KC, Adusumalli RB (2018) Effect of scalp position on tensile properties of single hair fibers. Int J Trichol 10:218CrossRef
go back to reference Kunugi T, Kawasumi T, Ito T (1990) Preparation of ultra-high modulus polyvinyl alcohol fibers by the zone-drawing method. J Appl Polym Sci 40:2101–2112CrossRef Kunugi T, Kawasumi T, Ito T (1990) Preparation of ultra-high modulus polyvinyl alcohol fibers by the zone-drawing method. J Appl Polym Sci 40:2101–2112CrossRef
go back to reference Landel RF, Nielsen LE (1974) Mechanical properties of polymers and composites. In: Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York, p 380 Landel RF, Nielsen LE (1974) Mechanical properties of polymers and composites. In: Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York, p 380
go back to reference Larsson PT, Lindström T, Carlsson LA, Fellers C (2018) Fiber length and bonding effects on tensile strength and toughness of kraft paper. J Mater Sci 53:3006–3015CrossRef Larsson PT, Lindström T, Carlsson LA, Fellers C (2018) Fiber length and bonding effects on tensile strength and toughness of kraft paper. J Mater Sci 53:3006–3015CrossRef
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388PubMedCrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388PubMedCrossRef
go back to reference Lee D, Ryu S (1999) The influence of fiber aspect ratio on the tensile and tear properties of short-fiber reinforced rubber. ICCM12, Paris Lee D, Ryu S (1999) The influence of fiber aspect ratio on the tensile and tear properties of short-fiber reinforced rubber. ICCM12, Paris
go back to reference Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69:2724–2733CrossRef Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69:2724–2733CrossRef
go back to reference Lee WJ, Clancy AJ, Kontturi E et al (2016) Strong and stiff: high-performance cellulose nanocrystal/poly (vinyl alcohol) composite fibers. ACS Appl Mater Interf 8:31500–31504CrossRef Lee WJ, Clancy AJ, Kontturi E et al (2016) Strong and stiff: high-performance cellulose nanocrystal/poly (vinyl alcohol) composite fibers. ACS Appl Mater Interf 8:31500–31504CrossRef
go back to reference Lin J, Bang SH, Malakooti MH, Sodano HA (2017) Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl Mater Interf 9:11167–11175CrossRef Lin J, Bang SH, Malakooti MH, Sodano HA (2017) Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl Mater Interf 9:11167–11175CrossRef
go back to reference Liu D, Sun X, Tian H et al (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989CrossRef Liu D, Sun X, Tian H et al (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989CrossRef
go back to reference Liu FP, Wolcott MP, Gardner DJ, Rials TG (1994) Characterization of the interface between cellulosic fibers and a thermoplastic matrix. Compos Interf 2:419–432CrossRef Liu FP, Wolcott MP, Gardner DJ, Rials TG (1994) Characterization of the interface between cellulosic fibers and a thermoplastic matrix. Compos Interf 2:419–432CrossRef
go back to reference Liu J, Gong W, Yao Y et al (2018) Strengthening carbon nanotube fibers with semi-crystallized polyvinyl alcohol and hot-stretching. Compos Sci Technol 164:290–295CrossRef Liu J, Gong W, Yao Y et al (2018) Strengthening carbon nanotube fibers with semi-crystallized polyvinyl alcohol and hot-stretching. Compos Sci Technol 164:290–295CrossRef
go back to reference Liu L, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly (vinyl alcohol) nanocomposites. Adv Func Mater 15:975–980CrossRef Liu L, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly (vinyl alcohol) nanocomposites. Adv Func Mater 15:975–980CrossRef
go back to reference Lossada F, Jiao D, Guo J et al (2019) Outstanding synergies in mechanical properties of bioinspired cellulose nanofibril nanocomposites using self-cross-linking polyurethanes. ACS Appl Polym Materi 1:3334–3342CrossRef Lossada F, Jiao D, Guo J et al (2019) Outstanding synergies in mechanical properties of bioinspired cellulose nanofibril nanocomposites using self-cross-linking polyurethanes. ACS Appl Polym Materi 1:3334–3342CrossRef
go back to reference Lu L, Hou W, Sun J et al (2014) Preparation of poly (vinyl alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with tea polyphenols. J Mater Sci 49:3322–3330CrossRef Lu L, Hou W, Sun J et al (2014) Preparation of poly (vinyl alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with tea polyphenols. J Mater Sci 49:3322–3330CrossRef
go back to reference Lundahl MJ, Klar V, Ajdary R et al (2018) Absorbent filaments from cellulose nanofibril hydrogels through continuous coaxial wet spinning. ACS Appl Mater Interf 10:27287–27296CrossRef Lundahl MJ, Klar V, Ajdary R et al (2018) Absorbent filaments from cellulose nanofibril hydrogels through continuous coaxial wet spinning. ACS Appl Mater Interf 10:27287–27296CrossRef
go back to reference Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272CrossRef Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272CrossRef
go back to reference Mahjoub R, Yatim JM, Sam ARM, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113CrossRef Mahjoub R, Yatim JM, Sam ARM, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113CrossRef
go back to reference Manchado ML, Valentini L, Biagiotti J, Kenny J (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505CrossRef Manchado ML, Valentini L, Biagiotti J, Kenny J (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505CrossRef
go back to reference Mander L, Liu H (2010) Comprehensive natural products II: chemistry and biology. Elsevier Mander L, Liu H (2010) Comprehensive natural products II: chemistry and biology. Elsevier
go back to reference Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromol 13:3887–3899CrossRef Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromol 13:3887–3899CrossRef
go back to reference Martone A, Faiella G, Antonucci V et al (2011) The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Compos Sci Technol 71:1117–1123CrossRef Martone A, Faiella G, Antonucci V et al (2011) The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Compos Sci Technol 71:1117–1123CrossRef
go back to reference Masuda J, Torkelson JM (2008) Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41:5974–5977CrossRef Masuda J, Torkelson JM (2008) Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41:5974–5977CrossRef
go back to reference Matuana L, Stark N (2015) The use of wood fibers as reinforcements in composites. In: Biofiber reinforcements in composite materials. Elsevier, pp 648–688 Matuana L, Stark N (2015) The use of wood fibers as reinforcements in composites. In: Biofiber reinforcements in composite materials. Elsevier, pp 648–688
go back to reference Matveeva AY, Pyrlin SV, Ramos MM et al (2014) Influence of waviness and curliness of fibres on mechanical properties of composites. Comput Mater Sci 87:1–11CrossRef Matveeva AY, Pyrlin SV, Ramos MM et al (2014) Influence of waviness and curliness of fibres on mechanical properties of composites. Comput Mater Sci 87:1–11CrossRef
go back to reference McIntosh D, Khabashesku VN, Barrera EV (2007) Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube− polypropylene composite fibers. J Phys Chem C 111:1592–1600CrossRef McIntosh D, Khabashesku VN, Barrera EV (2007) Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube− polypropylene composite fibers. J Phys Chem C 111:1592–1600CrossRef
go back to reference McIntosh D, Khabashesku VN, Barrera EV (2006) Nanocomposite fiber systems processed from fluorinated single-walled carbon nanotubes and a polypropylene matrix. Chem Mater 18:4561–4569CrossRef McIntosh D, Khabashesku VN, Barrera EV (2006) Nanocomposite fiber systems processed from fluorinated single-walled carbon nanotubes and a polypropylene matrix. Chem Mater 18:4561–4569CrossRef
go back to reference Meng Q, Li B, Li T, Feng X-Q (2017) A multiscale crack-bridging model of cellulose nanopaper. J Mech Phys Solids 103:22–39CrossRef Meng Q, Li B, Li T, Feng X-Q (2017) A multiscale crack-bridging model of cellulose nanopaper. J Mech Phys Solids 103:22–39CrossRef
go back to reference Mercader C, Denis-Lutard V, Jestin S et al (2012) Scalable process for the spinning of PVA–carbon nanotube composite fibers. J Appl Polym Sci 125:E191–E196CrossRef Mercader C, Denis-Lutard V, Jestin S et al (2012) Scalable process for the spinning of PVA–carbon nanotube composite fibers. J Appl Polym Sci 125:E191–E196CrossRef
go back to reference Mercer BS (2016) Molecular dynamics modeling of PPTA crystals in aramid fibers. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States) Mercer BS (2016) Molecular dynamics modeling of PPTA crystals in aramid fibers. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)
go back to reference Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A et al (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220PubMedCrossRef Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A et al (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220PubMedCrossRef
go back to reference Miao M, Shan M (2011) Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites. Compos Sci Technol 71:1713–1718CrossRef Miao M, Shan M (2011) Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites. Compos Sci Technol 71:1713–1718CrossRef
go back to reference Migneault S, Koubaa A, Perré P (2014) Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood-plastic composites. J Wood Chem Technol 34:241–261CrossRef Migneault S, Koubaa A, Perré P (2014) Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood-plastic composites. J Wood Chem Technol 34:241–261CrossRef
go back to reference Mihalic M, Sobczak L, Pretschuh C, Unterweger C (2019) Increasing the impact toughness of cellulose fiber reinforced polypropylene composites—influence of different impact modifiers and production scales. J Compos Sci 3:82CrossRef Mihalic M, Sobczak L, Pretschuh C, Unterweger C (2019) Increasing the impact toughness of cellulose fiber reinforced polypropylene composites—influence of different impact modifiers and production scales. J Compos Sci 3:82CrossRef
go back to reference Mohammadi P, Toivonen MS, Ikkala O et al (2017) Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep 7:1–10CrossRef Mohammadi P, Toivonen MS, Ikkala O et al (2017) Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep 7:1–10CrossRef
go back to reference Mokshina N, Chernova T, Galinousky D et al (2018) Key stages of fiber development as determinants of bast fiber yield and quality. Fibers 6:20CrossRef Mokshina N, Chernova T, Galinousky D et al (2018) Key stages of fiber development as determinants of bast fiber yield and quality. Fibers 6:20CrossRef
go back to reference Motamedian HR, Halilovic AE, Kulachenko A (2019) Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26:4099–4124CrossRef Motamedian HR, Halilovic AE, Kulachenko A (2019) Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26:4099–4124CrossRef
go back to reference Muiruri JK, Liu S, Teo WS et al (2017) Highly biodegradable and tough polylactic acid–cellulose nanocrystal composite. ACS Sustain Chem Eng 5:3929–3937CrossRef Muiruri JK, Liu S, Teo WS et al (2017) Highly biodegradable and tough polylactic acid–cellulose nanocrystal composite. ACS Sustain Chem Eng 5:3929–3937CrossRef
go back to reference Nadler M, Werner J, Mahrholz T et al (2009) Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos A Appl Sci Manuf 40:932–937CrossRef Nadler M, Werner J, Mahrholz T et al (2009) Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos A Appl Sci Manuf 40:932–937CrossRef
go back to reference Nair SS, Dartiailh C, Levin DB, Yan N (2019) Highly toughened and transparent biobased epoxy composites reinforced with cellulose nanofibrils. Polymers 11:612PubMedCentralCrossRef Nair SS, Dartiailh C, Levin DB, Yan N (2019) Highly toughened and transparent biobased epoxy composites reinforced with cellulose nanofibrils. Polymers 11:612PubMedCentralCrossRef
go back to reference Nairn J (2011) Aspect ratio requirements for nanotube-reinforced, polymer–matrix composites. Compos A Appl Sci Manuf 42:1850–1855CrossRef Nairn J (2011) Aspect ratio requirements for nanotube-reinforced, polymer–matrix composites. Compos A Appl Sci Manuf 42:1850–1855CrossRef
go back to reference Nakamae K, Nishino T, Gotoh Y (1995) Temperature dependence of the elastic modulus of the crystalline regions of poly (ethylene 2, 6-naphthalate). Polymer 36:1401–1405CrossRef Nakamae K, Nishino T, Gotoh Y (1995) Temperature dependence of the elastic modulus of the crystalline regions of poly (ethylene 2, 6-naphthalate). Polymer 36:1401–1405CrossRef
go back to reference Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45PubMedCrossRef Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45PubMedCrossRef
go back to reference Nechyporchuk O, Håkansson KM, Gowda VK et al (2019) Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv Materi Technol 4:1800557 Nechyporchuk O, Håkansson KM, Gowda VK et al (2019) Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv Materi Technol 4:1800557
go back to reference Nishiyama Y, Kim U-J, Kim D-Y et al (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromol 4:1013–1017CrossRef Nishiyama Y, Kim U-J, Kim D-Y et al (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromol 4:1013–1017CrossRef
go back to reference NOKIAN TYRES PLC (2015) REINFORCING MATERIALS IN RUBBER PRODUCTS NOKIAN TYRES PLC (2015) REINFORCING MATERIALS IN RUBBER PRODUCTS
go back to reference Northolt MG, Boerstoel H, Maatman H et al (2001) The structure and properties of cellulose fbres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264CrossRef Northolt MG, Boerstoel H, Maatman H et al (2001) The structure and properties of cellulose fbres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264CrossRef
go back to reference Nunez AJ, Sturm PC, Kenny JM et al (2003) Mechanical characterization of polypropylene–wood flour composites. J Appl Polym Sci 88:1420–1428CrossRef Nunez AJ, Sturm PC, Kenny JM et al (2003) Mechanical characterization of polypropylene–wood flour composites. J Appl Polym Sci 88:1420–1428CrossRef
go back to reference Oksman K (2000) Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater 7:403–414CrossRef Oksman K (2000) Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater 7:403–414CrossRef
go back to reference Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324CrossRef Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324CrossRef
go back to reference Oliva JM, Manzanares P, Ballesteros I, et al (2005) Application of Fenton’s reaction to steam explosion prehydrolysates from poplar biomass. In: twenty-sixth symposium on biotechnology for fuels and chemicals. pp 887–899 Oliva JM, Manzanares P, Ballesteros I, et al (2005) Application of Fenton’s reaction to steam explosion prehydrolysates from poplar biomass. In: twenty-sixth symposium on biotechnology for fuels and chemicals. pp 887–899
go back to reference Osong SH, Norgren S, Engstrand P (2014) Paper strength improvement by inclusion of nano-lignocellulose to Chemi-thermomechanical pulp. Nord Pulp Pap Res J 29:309–316CrossRef Osong SH, Norgren S, Engstrand P (2014) Paper strength improvement by inclusion of nano-lignocellulose to Chemi-thermomechanical pulp. Nord Pulp Pap Res J 29:309–316CrossRef
go back to reference Osorio L, Trujillo E, Lens F et al (2018) In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. J Reinf Plast Compos 37:1099–1113CrossRef Osorio L, Trujillo E, Lens F et al (2018) In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. J Reinf Plast Compos 37:1099–1113CrossRef
go back to reference Paiva M, Zhou B, Fernando K et al (2004) Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42:2849–2854CrossRef Paiva M, Zhou B, Fernando K et al (2004) Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42:2849–2854CrossRef
go back to reference Park Y, You M, Shin J et al (2019) Thermal conductivity enhancement in electrospun poly (vinyl alcohol) and poly (vinyl alcohol)/cellulose nanocrystal composite nanofibers. Sci Rep 9:1–10 Park Y, You M, Shin J et al (2019) Thermal conductivity enhancement in electrospun poly (vinyl alcohol) and poly (vinyl alcohol)/cellulose nanocrystal composite nanofibers. Sci Rep 9:1–10
go back to reference Peng J, Ellingham T, Sabo R et al (2014) Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber. Cellulose 21:4287–4298CrossRef Peng J, Ellingham T, Sabo R et al (2014) Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber. Cellulose 21:4287–4298CrossRef
go back to reference Peng J, Ellingham T, Sabo R et al (2015) Oriented polyvinyl alcohol films using short cellulose nanofibrils as a reinforcement. J Appl Polym Sci 132:1–10CrossRef Peng J, Ellingham T, Sabo R et al (2015) Oriented polyvinyl alcohol films using short cellulose nanofibrils as a reinforcement. J Appl Polym Sci 132:1–10CrossRef
go back to reference Peng Y, Gallegos SA, Gardner DJ et al (2016) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37:782–793CrossRef Peng Y, Gallegos SA, Gardner DJ et al (2016) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37:782–793CrossRef
go back to reference Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRef Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681CrossRef
go back to reference Prashantha K, Soulestin J, Lacrampe M-F et al (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763CrossRef Prashantha K, Soulestin J, Lacrampe M-F et al (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763CrossRef
go back to reference Qi JQ, Xie JL, Huang XY et al (2014) Influence of characteristic inhomogeneity of bamboo culm on mechanical properties of bamboo plywood: effect of culm height. J Wood Sci 60:396–402CrossRef Qi JQ, Xie JL, Huang XY et al (2014) Influence of characteristic inhomogeneity of bamboo culm on mechanical properties of bamboo plywood: effect of culm height. J Wood Sci 60:396–402CrossRef
go back to reference Qiu W, Zhang F, Endo T, Hirotsu T (2003) Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: effects of maleated polypropylene and cellulose content. J Appl Polym Sci 87:337–345CrossRef Qiu W, Zhang F, Endo T, Hirotsu T (2003) Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: effects of maleated polypropylene and cellulose content. J Appl Polym Sci 87:337–345CrossRef
go back to reference Radkar SS, Amiri A, Ulven CA (2019) Tensile behavior and diffusion of moisture through flax fibers by desorption method. Sustainability 11:3558CrossRef Radkar SS, Amiri A, Ulven CA (2019) Tensile behavior and diffusion of moisture through flax fibers by desorption method. Sustainability 11:3558CrossRef
go back to reference Risnasari I, Herawati E, Sirait E (2018) Characterization of Polypropylene Composite Reinforced with Wood Flour or Cellulose Fiber. IOP Publishing p 012002 Risnasari I, Herawati E, Sirait E (2018) Characterization of Polypropylene Composite Reinforced with Wood Flour or Cellulose Fiber. IOP Publishing p 012002
go back to reference Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind Crops Prod 71:44–53CrossRef Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind Crops Prod 71:44–53CrossRef
go back to reference Rohatgi A (2018) WebPlotDigitizer Version: 4.1. Austin, TX Rohatgi A (2018) WebPlotDigitizer Version: 4.1. Austin, TX
go back to reference Rusch F, Ceolin GB, Hillig É (2019) Morphology, density and dimensions of bamboo fibers: a bibliographical compilation. Pesquisa Agropecuária Trop 49:1–12CrossRef Rusch F, Ceolin GB, Hillig É (2019) Morphology, density and dimensions of bamboo fibers: a bibliographical compilation. Pesquisa Agropecuária Trop 49:1–12CrossRef
go back to reference Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111CrossRef Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111CrossRef
go back to reference Saba N, Mohammad F, Pervaiz M et al (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200PubMedCrossRef Saba N, Mohammad F, Pervaiz M et al (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200PubMedCrossRef
go back to reference Saito T, Uematsu T, Kimura S et al (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef Saito T, Uematsu T, Kimura S et al (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRef
go back to reference Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110CrossRef Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110CrossRef
go back to reference Sanders JE, Han Y, Rushing TS, Gardner DJ (2019) Electrospinning of cellulose nanocrystal-filled poly (Vinyl Alcohol) solutions: material property assessment. Nanomaterials 9:805PubMedCentralCrossRef Sanders JE, Han Y, Rushing TS, Gardner DJ (2019) Electrospinning of cellulose nanocrystal-filled poly (Vinyl Alcohol) solutions: material property assessment. Nanomaterials 9:805PubMedCentralCrossRef
go back to reference Sehaqui H, Ezekiel Mushi N, Morimune S et al (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interf 4:1043–1049CrossRef Sehaqui H, Ezekiel Mushi N, Morimune S et al (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interf 4:1043–1049CrossRef
go back to reference Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644CrossRef Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644CrossRef
go back to reference Shamsuddin S-R, Lee K-Y, Bismarck A (2016) Ductile unidirectional continuous rayon fibre-reinforced hierarchical composites. Compos A Appl Sci Manuf 90:633–641CrossRef Shamsuddin S-R, Lee K-Y, Bismarck A (2016) Ductile unidirectional continuous rayon fibre-reinforced hierarchical composites. Compos A Appl Sci Manuf 90:633–641CrossRef
go back to reference Shojaeiarani J, Bajwa DS, Stark NM (2018) Green esterification: a new approach to improve thermal and mechanical properties of poly (lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym Sci 135:46468CrossRef Shojaeiarani J, Bajwa DS, Stark NM (2018) Green esterification: a new approach to improve thermal and mechanical properties of poly (lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym Sci 135:46468CrossRef
go back to reference Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30:43–57CrossRef Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30:43–57CrossRef
go back to reference Song M, Yu H, Gu J et al (2018) Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int J Biol Macromol 113:171–178PubMedCrossRef Song M, Yu H, Gu J et al (2018) Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int J Biol Macromol 113:171–178PubMedCrossRef
go back to reference Sun S, Mitchell JR, MacNaughtan W et al (2010) Comparison of the mechanical properties of cellulose and starch films. Biomacromol 11:126–132CrossRef Sun S, Mitchell JR, MacNaughtan W et al (2010) Comparison of the mechanical properties of cellulose and starch films. Biomacromol 11:126–132CrossRef
go back to reference Suzuki K, Okumura H, Kitagawa K et al (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20:201–210CrossRef Suzuki K, Okumura H, Kitagawa K et al (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20:201–210CrossRef
go back to reference Suzuki K, Sato A, Okumura H et al (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21:507–518CrossRef Suzuki K, Sato A, Okumura H et al (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21:507–518CrossRef
go back to reference Takakura A, Beppu K, Nishihara T et al (2019) Strength of carbon nanotubes depends on their chemical structures. Nat Commun 10:1–7CrossRef Takakura A, Beppu K, Nishihara T et al (2019) Strength of carbon nanotubes depends on their chemical structures. Nat Commun 10:1–7CrossRef
go back to reference Textile Exchange (2020) Preferred fiber & materials market report Textile Exchange (2020) Preferred fiber & materials market report
go back to reference Thistlethwaite T, Jakeways R, Ward I (1988) The crystal modulus and structure of oriented poly (ethylene terephthalate). Polymer 29:61–69CrossRef Thistlethwaite T, Jakeways R, Ward I (1988) The crystal modulus and structure of oriented poly (ethylene terephthalate). Polymer 29:61–69CrossRef
go back to reference Toivonen MS, Kaskela A, Rojas OJ et al (2015) Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv Func Mater 25:6618–6626CrossRef Toivonen MS, Kaskela A, Rojas OJ et al (2015) Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv Func Mater 25:6618–6626CrossRef
go back to reference Toivonen MS, Onelli OD, Jacucci G et al (2018) Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv Mater 30:1704050CrossRef Toivonen MS, Onelli OD, Jacucci G et al (2018) Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv Mater 30:1704050CrossRef
go back to reference Tomczak F, Sydenstricker THD, Satyanarayana KG (2007) Studies on lignocellulosic fibers of Brazil. Part II: morphology and properties of Brazilian coconut fibers. Compos A Appl Sci Manuf 38:1710–1721CrossRef Tomczak F, Sydenstricker THD, Satyanarayana KG (2007) Studies on lignocellulosic fibers of Brazil. Part II: morphology and properties of Brazilian coconut fibers. Compos A Appl Sci Manuf 38:1710–1721CrossRef
go back to reference Tomé LC, Pinto RJ, Trovatti E et al (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly (lactic acid) through a simple approach. Green Chem 13:419–427CrossRef Tomé LC, Pinto RJ, Trovatti E et al (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly (lactic acid) through a simple approach. Green Chem 13:419–427CrossRef
go back to reference Torres-Rendon JG, Schacher FH, Ifuku S, Walther A (2014) Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromol 15:2709–2717CrossRef Torres-Rendon JG, Schacher FH, Ifuku S, Walther A (2014) Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromol 15:2709–2717CrossRef
go back to reference Tummala GK, Joffre T, Rojas R et al (2017) Strain-induced stiffening of nanocellulose-reinforced poly (vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 13:3936–3945PubMedCrossRef Tummala GK, Joffre T, Rojas R et al (2017) Strain-induced stiffening of nanocellulose-reinforced poly (vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 13:3936–3945PubMedCrossRef
go back to reference Tze WT, O’Neill SC, Tripp CP et al (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39:184–195 Tze WT, O’Neill SC, Tripp CP et al (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39:184–195
go back to reference Uddin AJ, Watanabe A, Gotoh Y et al (2012) From “Strong” to “Much Stronger”: utilization of green tea extract dispersant for SWCNT-reinforced polymer composites. Macromol Mater Eng 297:1114–1123CrossRef Uddin AJ, Watanabe A, Gotoh Y et al (2012) From “Strong” to “Much Stronger”: utilization of green tea extract dispersant for SWCNT-reinforced polymer composites. Macromol Mater Eng 297:1114–1123CrossRef
go back to reference Unterweger C, Brüggemann O, Fürst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35:227–236CrossRef Unterweger C, Brüggemann O, Fürst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35:227–236CrossRef
go back to reference USDA A (2001) The classification of cotton. Agricultural handbook 566 USDA A (2001) The classification of cotton. Agricultural handbook 566
go back to reference Usov I, Nyström G, Adamcik J et al (2015) Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat Commun 6:1–11CrossRef Usov I, Nyström G, Adamcik J et al (2015) Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat Commun 6:1–11CrossRef
go back to reference Vallejos ME, Felissia FE, Area MC et al (2016) Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohyd Polym 139:99–105CrossRef Vallejos ME, Felissia FE, Area MC et al (2016) Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohyd Polym 139:99–105CrossRef
go back to reference Van den Oever M, Bos H (1998) Critical fibre length and apparent interfacial shear strength of single flax fibre polypropylene composites. Adv Compos Lett 7:096369359800700303 Van den Oever M, Bos H (1998) Critical fibre length and apparent interfacial shear strength of single flax fibre polypropylene composites. Adv Compos Lett 7:096369359800700303
go back to reference Van den Oever M, Bos H, Van Kemenade M (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7:387–402CrossRef Van den Oever M, Bos H, Van Kemenade M (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7:387–402CrossRef
go back to reference Vigolo B, Penicaud A, Coulon C et al (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334PubMedCrossRef Vigolo B, Penicaud A, Coulon C et al (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334PubMedCrossRef
go back to reference Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28:864–871CrossRef Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28:864–871CrossRef
go back to reference Wakabayashi M, Fujisawa S, Saito T, Isogai A (2020) Nanocellulose film properties tunable by controlling degree of fibrillation of TEMPO-oxidized cellulose. Front Chem 8:37PubMedPubMedCentralCrossRef Wakabayashi M, Fujisawa S, Saito T, Isogai A (2020) Nanocellulose film properties tunable by controlling degree of fibrillation of TEMPO-oxidized cellulose. Front Chem 8:37PubMedPubMedCentralCrossRef
go back to reference Walther A, Timonen JV, Díez I et al (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928PubMedCrossRef Walther A, Timonen JV, Díez I et al (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928PubMedCrossRef
go back to reference Wanasekara ND, Michud A, Zhu C et al (2016) Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99:222–230CrossRef Wanasekara ND, Michud A, Zhu C et al (2016) Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99:222–230CrossRef
go back to reference Wang L, Roach AW, Gardner DJ, Han Y (2018) Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils. Cellulose 25:439–448CrossRef Wang L, Roach AW, Gardner DJ, Han Y (2018) Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils. Cellulose 25:439–448CrossRef
go back to reference Wang S, Jiang F, Xu X et al (2017) Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 29:1702498CrossRef Wang S, Jiang F, Xu X et al (2017) Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 29:1702498CrossRef
go back to reference Wang W-J, Wang W-W, Shao Z-Q (2014) Surface modification of cellulose nanowhiskers for application in thermosetting epoxy polymers. Cellulose 21:2529–2538CrossRef Wang W-J, Wang W-W, Shao Z-Q (2014) Surface modification of cellulose nanowhiskers for application in thermosetting epoxy polymers. Cellulose 21:2529–2538CrossRef
go back to reference Wei Y, Lai D, Zou L, et al (2015) Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids. IOP Publishing, p 012052 Wei Y, Lai D, Zou L, et al (2015) Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids. IOP Publishing, p 012052
go back to reference Wernik J, Meguid S (2014) On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater Des 59:19–32CrossRef Wernik J, Meguid S (2014) On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater Des 59:19–32CrossRef
go back to reference Wu C-M, Lai W-Y, Wang C-Y (2016) Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Materials 9:314PubMedCentralCrossRef Wu C-M, Lai W-Y, Wang C-Y (2016) Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Materials 9:314PubMedCentralCrossRef
go back to reference Wu D, Wu L, Zhou W et al (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci, Part B: Polym Phys 48:479–489CrossRef Wu D, Wu L, Zhou W et al (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci, Part B: Polym Phys 48:479–489CrossRef
go back to reference Xia H, Wang Q, Li K, Hu G (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93:378–386CrossRef Xia H, Wang Q, Li K, Hu G (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93:378–386CrossRef
go back to reference Xu X, Uddin AJ, Aoki K et al (2010) Fabrication of high strength PVA/SWCNT composite fibers by gel spinning. Carbon 48:1977–1984CrossRef Xu X, Uddin AJ, Aoki K et al (2010) Fabrication of high strength PVA/SWCNT composite fibers by gel spinning. Carbon 48:1977–1984CrossRef
go back to reference Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites–a review. Compos B Eng 56:296–317CrossRef Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites–a review. Compos B Eng 56:296–317CrossRef
go back to reference Yang H-S, Gardner DJ (2011) Mechanical properties of cellulose nanofibril-filled polypropylene composites. Wood Fiber Sci 43:143–152 Yang H-S, Gardner DJ (2011) Mechanical properties of cellulose nanofibril-filled polypropylene composites. Wood Fiber Sci 43:143–152
go back to reference Yang Y, Ramirez C, Wang X et al (2017) Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites. Carbon 115:402–408CrossRef Yang Y, Ramirez C, Wang X et al (2017) Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites. Carbon 115:402–408CrossRef
go back to reference Yao J, Chen S, Chen Y et al (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interf 9:20330–20339CrossRef Yao J, Chen S, Chen Y et al (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interf 9:20330–20339CrossRef
go back to reference Yee MJ, Mubarak N, Khalid M et al (2018) Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci Rep 8:1–16CrossRef Yee MJ, Mubarak N, Khalid M et al (2018) Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci Rep 8:1–16CrossRef
go back to reference Zhang X, Liu T, Sreekumar T et al (2004) Gel spinning of PVA/SWNT composite fiber. Polymer 45:8801–8807CrossRef Zhang X, Liu T, Sreekumar T et al (2004) Gel spinning of PVA/SWNT composite fiber. Polymer 45:8801–8807CrossRef
go back to reference Zhang X, Liu T, Sreekumar T et al (2003) Poly (vinyl alcohol)/SWNT composite film. Nano Lett 3:1285–1288CrossRef Zhang X, Liu T, Sreekumar T et al (2003) Poly (vinyl alcohol)/SWNT composite film. Nano Lett 3:1285–1288CrossRef
go back to reference Zhao P, Wang K, Yang H et al (2007) Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48:5688–5695CrossRef Zhao P, Wang K, Yang H et al (2007) Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48:5688–5695CrossRef
go back to reference Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6:5171–5198PubMedPubMedCentralCrossRef Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6:5171–5198PubMedPubMedCentralCrossRef
Metadata
Title
Towards a cellulose-based society: opportunities and challenges
Authors
Jinwu Wang
Lu Wang
Douglas J. Gardner
Stephen M. Shaler
Zhiyong Cai
Publication date
27-03-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 8/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03771-4

Other articles of this Issue 8/2021

Cellulose 8/2021 Go to the issue