Skip to main content
Erschienen in: Cellulose 6/2014

01.12.2014 | Original Paper

Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber

verfasst von: Jun Peng, Thomas Ellingham, Ron Sabo, Lih-Sheng Turng, Craig M. Clemons

Erschienen in: Cellulose | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing during gel spinning and post-hot-drawing at a high temperature after drying. A maximum total draw ratio of 27 was achieved with various SCNF contents investigated. The PVA crystal orientation increased when small amounts of SCNF were added, but decreased again as the SCNF content was increased above about 2 or 3 %, likely due to SCNF percolation resulting in network formation that inhibited alignment. SCNF fillers were effective in improving PVA fiber tensile properties (i.e., ultimate strength and elastic modulus). For example, the ultimate strength and modulus of PVA/SCNF composite fiber with a SCNF weight ratio of 6 were nearly 60 and 220 % higher than that of neat PVA. Shifts in the Raman peak at ~1,095 cm−1, which were associated with the C–O–C glycosidic bond of SCNF, indicated good stress-transfer between the SCNF and the PVA matrix due to strong interfacial hydrogen bonding. Cryogenic fractured scanning electron microscopy images of filled and unfilled PVA fibers showed uniform SCNF dispersion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson SR, Esposito D, Gillette W, Zhu JY, Baxa U, McNeil SE (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J 13:35–41 Anderson SR, Esposito D, Gillette W, Zhu JY, Baxa U, McNeil SE (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J 13:35–41
Zurück zum Zitat ASTM (1989) Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials vol D3379-75 ASTM (1989) Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials vol D3379-75
Zurück zum Zitat Deepak KLN, Rao DN, Rao V (2012) Spectroscopic investigation of fs laser-induced defects in polymer and crystal media. In: Proceedings of the SPIE 8530, laser-induced damage in optical materials, December 4, 2012. doi:10.1117/12.975812 Deepak KLN, Rao DN, Rao V (2012) Spectroscopic investigation of fs laser-induced defects in polymer and crystal media. In: Proceedings of the SPIE 8530, laser-induced damage in optical materials, December 4, 2012. doi:10.​1117/​12.​975812
Zurück zum Zitat Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRef Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRef
Zurück zum Zitat Elices M, Llorca J (2002) Fiber fracture. Elsevier Science Ltd, Kidlington Elices M, Llorca J (2002) Fiber fracture. Elsevier Science Ltd, Kidlington
Zurück zum Zitat Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7:2077–2081CrossRef Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7:2077–2081CrossRef
Zurück zum Zitat Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef
Zurück zum Zitat Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836. doi:10.1021/bm101510r CrossRef Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836. doi:10.​1021/​bm101510r CrossRef
Zurück zum Zitat Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRef Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRef
Zurück zum Zitat Ke B (1964) Newer methods of polymer characterization, vol 6. Interscience Publishers, New York, NY Ke B (1964) Newer methods of polymer characterization, vol 6. Interscience Publishers, New York, NY
Zurück zum Zitat Lewin M, Pearce EM (1998) Handbook of fiber chemistry, 2nd edn. Marcel Dekker Inc., Brookly, NY Lewin M, Pearce EM (1998) Handbook of fiber chemistry, 2nd edn. Marcel Dekker Inc., Brookly, NY
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.​1039/​c0cs00108b CrossRef
Zurück zum Zitat Morris MC, McMurdie HF, Evans EH, Paretzkin B, Parker HS, Panagiotopoulos NC (1981) Standard X-ray diffraction powder patterns: section 18. Data for 58 substances. National Bureau of Standards, Washington, DC Morris MC, McMurdie HF, Evans EH, Paretzkin B, Parker HS, Panagiotopoulos NC (1981) Standard X-ray diffraction powder patterns: section 18. Data for 58 substances. National Bureau of Standards, Washington, DC
Zurück zum Zitat Nishino T, Takano K, Nakamae K (1995) Elastic-modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647–1651CrossRef Nishino T, Takano K, Nakamae K (1995) Elastic-modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647–1651CrossRef
Zurück zum Zitat Nishiyama M (1997) New synthetic fiber and its applications. Chem Fibers Int 47:296–297 Nishiyama M (1997) New synthetic fiber and its applications. Chem Fibers Int 47:296–297
Zurück zum Zitat Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRef
Zurück zum Zitat Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2010) Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. Biomacromolecules 11:762–768CrossRef Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2010) Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. Biomacromolecules 11:762–768CrossRef
Zurück zum Zitat Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369. doi:10.1021/bm200141x CrossRef Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369. doi:10.​1021/​bm200141x CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786. doi:10.1177/004051755902901003 Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786. doi:10.​1177/​0040517559029010​03
Zurück zum Zitat Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049. doi:10.1021/am2016766 CrossRef Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049. doi:10.​1021/​am2016766 CrossRef
Zurück zum Zitat Seidel A (2008) Characterization and analysis of polymers, 1st edn. Wiley-Interscience, Hoboken, NJ Seidel A (2008) Characterization and analysis of polymers, 1st edn. Wiley-Interscience, Hoboken, NJ
Zurück zum Zitat Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. doi:10.1021/Bm2017542 CrossRef Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. doi:10.​1021/​Bm2017542 CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef
Zurück zum Zitat Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRef
Zurück zum Zitat Sun W, Chen HS, Luo X, Qian HP (2001) The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cem Concr Res 31:595–601CrossRef Sun W, Chen HS, Luo X, Qian HP (2001) The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cem Concr Res 31:595–601CrossRef
Zurück zum Zitat Uddin AJ, Ohkoshi Y, Gotoh Y, Nagura M, Endo R, Hara T (2006) Effects of take-up speed of melt spinning on the structure and mechanical properties of maximally laser drawn Pa9-T fibers. Int Polym Process 21:263–271CrossRef Uddin AJ, Ohkoshi Y, Gotoh Y, Nagura M, Endo R, Hara T (2006) Effects of take-up speed of melt spinning on the structure and mechanical properties of maximally laser drawn Pa9-T fibers. Int Polym Process 21:263–271CrossRef
Zurück zum Zitat Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624. doi:10.1021/bm101280f CrossRef Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624. doi:10.​1021/​bm101280f CrossRef
Zurück zum Zitat Walther A, Timonen JV, Diez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928. doi:10.1002/adma.201100580 CrossRef Walther A, Timonen JV, Diez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928. doi:10.​1002/​adma.​201100580 CrossRef
Zurück zum Zitat Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047. doi:10.1007/s10570-012-9765-6 CrossRef Wang QQ, Zhu JY, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047. doi:10.​1007/​s10570-012-9765-6 CrossRef
Zurück zum Zitat Wiley JH, Atalla RH (1987) Band assignments in the Raman-spectra of celluloses. Carbohydr Res 160:113–129CrossRef Wiley JH, Atalla RH (1987) Band assignments in the Raman-spectra of celluloses. Carbohydr Res 160:113–129CrossRef
Zurück zum Zitat Wu QA, Chen N, Wang Q (2010) Crystallization behavior of melt-spun poly(vinyl alcohol) fibers during drawing process. J Polym Res 17:903–909CrossRef Wu QA, Chen N, Wang Q (2010) Crystallization behavior of melt-spun poly(vinyl alcohol) fibers during drawing process. J Polym Res 17:903–909CrossRef
Zurück zum Zitat Xu XZ, Wang HR, Jiang L, Wang XN, Payne SA, Zhu JY, Li RP (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47:3409–3416CrossRef Xu XZ, Wang HR, Jiang L, Wang XN, Payne SA, Zhu JY, Li RP (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47:3409–3416CrossRef
Zurück zum Zitat Zheng ZH, Feldman D (1995) Synthetic fiber-reinforced concrete. Prog Polym Sci 20:185–210CrossRef Zheng ZH, Feldman D (1995) Synthetic fiber-reinforced concrete. Prog Polym Sci 20:185–210CrossRef
Zurück zum Zitat Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339. doi:10.1039/c1gc15103g CrossRef Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339. doi:10.​1039/​c1gc15103g CrossRef
Metadaten
Titel
Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber
verfasst von
Jun Peng
Thomas Ellingham
Ron Sabo
Lih-Sheng Turng
Craig M. Clemons
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0411-3

Weitere Artikel der Ausgabe 6/2014

Cellulose 6/2014 Zur Ausgabe