Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

03-08-2021 | Research Article-Computer Engineering and Computer Science

UAV Communications with Machine Learning: Challenges, Applications and Open Issues

Authors: Sana Ben Aissa, Asma Ben Letaifa

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Unmanned aerial vehicles (UAV) have recently proved their ability to afford reliable and cost-effective solutions for many real-world scenarios. The autonomy, mobility and flexibility nature along with communications interoperability have made UAV able to provide a large variety of services. Awareness of context changes and adaptability to current services requirements are the key to UAVs’ deployment success. For this reason, machine learning (ML) has been widely used in overcoming the challenges that UAV faces in mobility, communication and resources management. This paper will mainly focus on the proposed UAV-centric ML solutions and their satisfaction with network requirements taking into consideration UAVs’ roles, collaboration, cooperation and network changing contexts. Solutions proposed in air to air, air to ground and ground to air communications as well as UAVs-enabled mobile edge computing are investigated for possible future insights. Future works will indeed highlight the need of UAVs’ cooperation in the emergent 5G/6G networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sánchez-García, J.; García-Campos, J.M.; Arzamendia, M.; Reina, D.G.; Toral, S.L.; Gregor, D.: A survey on unmanned aerial and aquatic vehicle multi-hop networks: wireless communications, evaluation tools and applications. Comput. Commun. 119, 43–65 (2018) Sánchez-García, J.; García-Campos, J.M.; Arzamendia, M.; Reina, D.G.; Toral, S.L.; Gregor, D.: A survey on unmanned aerial and aquatic vehicle multi-hop networks: wireless communications, evaluation tools and applications. Comput. Commun. 119, 43–65 (2018)
3.
go back to reference Gu, J.; Su, T.; Wang, Q.; Du, X.; Guizani, M.: Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Commun. Mag. 56(4), 82–89 (2018) Gu, J.; Su, T.; Wang, Q.; Du, X.; Guizani, M.: Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Commun. Mag. 56(4), 82–89 (2018)
4.
go back to reference Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A.: LSAR: multi-UAV collaboration for search and rescue missions. IEEE Access 7, 55817–55832 (2019) Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A.: LSAR: multi-UAV collaboration for search and rescue missions. IEEE Access 7, 55817–55832 (2019)
5.
go back to reference Gupta, L.; Jain, R.; Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016) Gupta, L.; Jain, R.; Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016)
6.
go back to reference Teague, E.; Kewley, R.: Swarming Unmanned Aircraft Systems (2008) Teague, E.; Kewley, R.: Swarming Unmanned Aircraft Systems (2008)
7.
go back to reference Tahir, A.; Böling, J.; Haghbayan, M.-H.; Toivonen, H.T.; Plosila, J.: Swarms of unmanned aerial vehicles: a survey. J. Ind. Inf. Integr. 16, 100106 (2019) Tahir, A.; Böling, J.; Haghbayan, M.-H.; Toivonen, H.T.; Plosila, J.: Swarms of unmanned aerial vehicles: a survey. J. Ind. Inf. Integr. 16, 100106 (2019)
8.
go back to reference Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J.: Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019) Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J.: Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019)
9.
go back to reference Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.; Debbah, M.: A tutorial on UAVS for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019) Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.; Debbah, M.: A tutorial on UAVS for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019)
10.
go back to reference Nguyen, H.C.; Amorim, R.; Wigard, J.; KováCs, I.Z.; Sørensen, T.B.; Mogensen, P.E.: How to ensure reliable connectivity for aerial vehicles over cellular networks. IEEE Access 6, 12304–12317 (2018) Nguyen, H.C.; Amorim, R.; Wigard, J.; KováCs, I.Z.; Sørensen, T.B.; Mogensen, P.E.: How to ensure reliable connectivity for aerial vehicles over cellular networks. IEEE Access 6, 12304–12317 (2018)
11.
go back to reference Chen, M.; Mozaffari, M.; Saad, W.; Yin, C.; Debbah, M.; Hong, C.S.: Caching in the sky: proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun. 35(5), 1046–1061 (2017) Chen, M.; Mozaffari, M.; Saad, W.; Yin, C.; Debbah, M.; Hong, C.S.: Caching in the sky: proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun. 35(5), 1046–1061 (2017)
12.
go back to reference Wang, Y.; Feng, C.; Zhang, T.; Liu, Y.; Nallanathan, A.: QOE based network deployment and caching placement for cache-enabling UAV networks. In: ICC 2020—2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020) Wang, Y.; Feng, C.; Zhang, T.; Liu, Y.; Nallanathan, A.: QOE based network deployment and caching placement for cache-enabling UAV networks. In: ICC 2020—2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020)
13.
go back to reference Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource allocation in a network of cache-enabled LTE-u UAVS. In: IEEE Global Communications Conference, pp. 1–6 (2017) Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource allocation in a network of cache-enabled LTE-u UAVS. In: IEEE Global Communications Conference, pp. 1–6 (2017)
14.
go back to reference Hossein Motlagh, N.; Taleb, T.; Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3(6), 899–922 (2016) Hossein Motlagh, N.; Taleb, T.; Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3(6), 899–922 (2016)
15.
go back to reference Luo, C.; Nightingale, J.; Asemota, E.; Grecos, C.: A uav-cloud system for disaster sensing applications. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015) Luo, C.; Nightingale, J.; Asemota, E.; Grecos, C.: A uav-cloud system for disaster sensing applications. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015)
16.
go back to reference Mahmoud, S.Y.M.; Mohamed, N.: Toward a cloud platform for UAV resources and services. In: 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA), pp. 23–30 (2015) Mahmoud, S.Y.M.; Mohamed, N.: Toward a cloud platform for UAV resources and services. In: 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA), pp. 23–30 (2015)
17.
go back to reference Mach, P.; Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017) Mach, P.; Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)
18.
go back to reference Zhou, F.; Wu, Y.; Sun, H.; Chu, Z.: UAV-enabled mobile edge computing: Offloading optimization and trajectory design. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018) Zhou, F.; Wu, Y.; Sun, H.; Chu, Z.: UAV-enabled mobile edge computing: Offloading optimization and trajectory design. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018)
19.
go back to reference Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M.: Energy efficient resource allocation in UAV-enabled mobile edge computing networks. IEEE Trans. Wirel. Commun. 18(9), 4576–4589 (2019) Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M.: Energy efficient resource allocation in UAV-enabled mobile edge computing networks. IEEE Trans. Wirel. Commun. 18(9), 4576–4589 (2019)
20.
go back to reference Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y.: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018) Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y.: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018)
21.
go back to reference Du, Y.; Yang, K.; Wang, K.; Zhang, G.; Zhao, Y.; Chen, D.: Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IOT systems. IEEE Trans. Veh. Technol. 68(10), 10187–10200 (2019) Du, Y.; Yang, K.; Wang, K.; Zhang, G.; Zhao, Y.; Chen, D.: Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IOT systems. IEEE Trans. Veh. Technol. 68(10), 10187–10200 (2019)
22.
go back to reference Du, Y.; Wang, K.; Yang, K.; Zhang, G.: Energy-efficient resource allocation in UAV based MEC system for IOT devices. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018) Du, Y.; Wang, K.; Yang, K.; Zhang, G.: Energy-efficient resource allocation in UAV based MEC system for IOT devices. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018)
23.
go back to reference Zhou, F.; Hu, R.Q.; Li, Z.; Wang, Y.: Mobile edge computing in unmanned aerial vehicle networks. IEEE Wirel. Commun. 27(1), 140–146 (2020) Zhou, F.; Hu, R.Q.; Li, Z.; Wang, Y.: Mobile edge computing in unmanned aerial vehicle networks. IEEE Wirel. Commun. 27(1), 140–146 (2020)
24.
go back to reference Alpaydin, E.: Introduction to Machine Learning. The MIT Press, New York (2020)MATH Alpaydin, E.: Introduction to Machine Learning. The MIT Press, New York (2020)MATH
25.
go back to reference Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K.: Artificial intelligence-enabled intelligent 6g networks. arXiv:1912.05744 (2019) Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K.: Artificial intelligence-enabled intelligent 6g networks. arXiv:​1912.​05744 (2019)
26.
go back to reference Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Cervera, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, 3296874:1–3296874:13 (2017) Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Cervera, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, 3296874:1–3296874:13 (2017)
31.
go back to reference Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G.: A survey on machine-learning techniques for UAV-based communications. Sensors 19, 5170 (2019) Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G.: A survey on machine-learning techniques for UAV-based communications. Sensors 19, 5170 (2019)
32.
go back to reference Zohdi, T.I.: The Game of Drones: rapid agent-based machine-learning models for multi-UAV path planning. Comput. Mech. 65(1), 217–228 (2019)MathSciNetMATH Zohdi, T.I.: The Game of Drones: rapid agent-based machine-learning models for multi-UAV path planning. Comput. Mech. 65(1), 217–228 (2019)MathSciNetMATH
35.
go back to reference Hu, J.; Zhang, H.; Song, L.: Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-and-send protocol. IEEE Internet Things J. 6(4), 6177–6189 (2019) Hu, J.; Zhang, H.; Song, L.: Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-and-send protocol. IEEE Internet Things J. 6(4), 6177–6189 (2019)
36.
go back to reference Klaine, P.V.; Nadas, J.; Souza, R.D.; Imran, M.: Distributed drone base station positioning for emergency cellular networks using reinforcement learning. Cognit. Comput. 10, 790–804 (2018) Klaine, P.V.; Nadas, J.; Souza, R.D.; Imran, M.: Distributed drone base station positioning for emergency cellular networks using reinforcement learning. Cognit. Comput. 10, 790–804 (2018)
39.
go back to reference Peng, H.; Razi, A.; Afghah, F.; Ashdown, J.: A unified framework for joint mobility prediction and object profiling of drones in UAV networks. J. Commun. Netw. 20(5), 434–442 (2018) Peng, H.; Razi, A.; Afghah, F.; Ashdown, J.: A unified framework for joint mobility prediction and object profiling of drones in UAV networks. J. Commun. Netw. 20(5), 434–442 (2018)
40.
go back to reference Zheng, Z.; Sangaiah, A.K.; Wang, T.: Adaptive communication protocols in flying ad hoc network. IEEE Commun. Mag. 56(1), 136–142 (2018) Zheng, Z.; Sangaiah, A.K.; Wang, T.: Adaptive communication protocols in flying ad hoc network. IEEE Commun. Mag. 56(1), 136–142 (2018)
41.
go back to reference Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Luo, X.: Air-to-air path loss prediction based on machine learning methods in urban environments. Wirel. Commun. Mob. Comput. 2018, 8489326:1–8489326:9 (2018) Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Luo, X.: Air-to-air path loss prediction based on machine learning methods in urban environments. Wirel. Commun. Mob. Comput. 2018, 8489326:1–8489326:9 (2018)
42.
go back to reference Jailton, J.; Carvalho, T.; Araújo, J.; Francês, R.: Relay positioning strategy for traffic data collection of multiple unmanned aerial vehicles using hybrid optimization systems: a fanet-based case study. In: Wireless Communications and Mobile Computing (2017) Jailton, J.; Carvalho, T.; Araújo, J.; Francês, R.: Relay positioning strategy for traffic data collection of multiple unmanned aerial vehicles using hybrid optimization systems: a fanet-based case study. In: Wireless Communications and Mobile Computing (2017)
43.
go back to reference Shamsoshoara, A.; Khaledi, M.; Afghah, F.; Razi, A.; Ashdown, J.: Distributed cooperative spectrum sharing in uav networks using multi-agent reinforcement learning. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2019) Shamsoshoara, A.; Khaledi, M.; Afghah, F.; Razi, A.; Ashdown, J.: Distributed cooperative spectrum sharing in uav networks using multi-agent reinforcement learning. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2019)
44.
go back to reference Hoseini, S.A.; Hassan, J.; Bokani, A.; Kanhere, S.S.: Trajectory optimization of flying energy sources using q-learning to recharge hotspot UAVs. In: IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 683–688 (2020) Hoseini, S.A.; Hassan, J.; Bokani, A.; Kanhere, S.S.: Trajectory optimization of flying energy sources using q-learning to recharge hotspot UAVs. In: IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 683–688 (2020)
45.
go back to reference Mozaffari, M.; Zadeh, K.; Taleb, A.; Saad, W.; Bennis, M.; Debbah, M.: Beyond 5g with UAVs: foundations of a 3d wireless cellular network. IEEE Trans. Wirel. Commun. 18(1), 357–372 (2019) Mozaffari, M.; Zadeh, K.; Taleb, A.; Saad, W.; Bennis, M.; Debbah, M.: Beyond 5g with UAVs: foundations of a 3d wireless cellular network. IEEE Trans. Wirel. Commun. 18(1), 357–372 (2019)
46.
go back to reference Wang, S.; Chen, M.; Yin, C.; Saad, W.; Hong, C.; Cui, S.; Poor, H.: Federated learning for task and resource allocation in wireless high altitude balloon networks. arXiv:2003.09375 (2020) Wang, S.; Chen, M.; Yin, C.; Saad, W.; Hong, C.; Cui, S.; Poor, H.: Federated learning for task and resource allocation in wireless high altitude balloon networks. arXiv:​2003.​09375 (2020)
47.
go back to reference Du, W.; Ying, W.; Yang, P.; Cao, X.; Yan, G.; Tang, K.; Wu, D.: Network-based heterogeneous particle swarm optimization and its application in UAV communication coverage. IEEE Trans. Emerg. Top. Comput. Intell. 4(3), 312–323 (2020) Du, W.; Ying, W.; Yang, P.; Cao, X.; Yan, G.; Tang, K.; Wu, D.: Network-based heterogeneous particle swarm optimization and its application in UAV communication coverage. IEEE Trans. Emerg. Top. Comput. Intell. 4(3), 312–323 (2020)
48.
go back to reference Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C.: Energy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approach. IEEE J. Sel. Areas Commun. 36(9), 2059–2070 (2018) Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C.: Energy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approach. IEEE J. Sel. Areas Commun. 36(9), 2059–2070 (2018)
49.
go back to reference Liu, C.H.; Ma, X.; Gao, X.; Tang, J.: Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning. IEEE Trans. Mob. Comput. 19(6), 1274–1285 (2020) Liu, C.H.; Ma, X.; Gao, X.; Tang, J.: Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning. IEEE Trans. Mob. Comput. 19(6), 1274–1285 (2020)
50.
go back to reference Ghanavi, R.; Kalantari, E.; Sabbaghian, M.; Yanikomeroglu, H.; Yongacoglu, A.: Efficient 3d aerial base station placement considering users mobility by reinforcement learning. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018) Ghanavi, R.; Kalantari, E.; Sabbaghian, M.; Yanikomeroglu, H.; Yongacoglu, A.: Efficient 3d aerial base station placement considering users mobility by reinforcement learning. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018)
51.
go back to reference Lu, L.; Yang, Z.; Chen, M.; Zang, Z.; Shikh-Bahaei, M.: Machine learning for predictive deployment of UAVs with multiple access. arXiv:2003.02631 (2020) Lu, L.; Yang, Z.; Chen, M.; Zang, Z.; Shikh-Bahaei, M.: Machine learning for predictive deployment of UAVs with multiple access. arXiv:​2003.​02631 (2020)
52.
go back to reference Arani, A.H.; Azari, M.M.; Melek, W.; Safavi-Naeini, S.: Learning in the sky: an efficient 3d placement of UAVs. arXiv:2003.02650 (2020) Arani, A.H.; Azari, M.M.; Melek, W.; Safavi-Naeini, S.: Learning in the sky: an efficient 3d placement of UAVs. arXiv:​2003.​02650 (2020)
53.
go back to reference Cheng, F.; Zou, D.; Liu, J.; Wang, J.; Zhao, N.: Learning-based user association for dual-UAV enabled wireless networks with d2d connections. IEEE Access 7, 30672–30682 (2019) Cheng, F.; Zou, D.; Liu, J.; Wang, J.; Zhao, N.: Learning-based user association for dual-UAV enabled wireless networks with d2d connections. IEEE Access 7, 30672–30682 (2019)
54.
go back to reference Sikeridis, D.; EleniTsiropoulou, E.; Devetsikiotis, M.; Papavassiliou, S.: Self-adaptive energy efficient operation in UAV-assisted public safety networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 1–5, (2018) Sikeridis, D.; EleniTsiropoulou, E.; Devetsikiotis, M.; Papavassiliou, S.: Self-adaptive energy efficient operation in UAV-assisted public safety networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 1–5, (2018)
55.
go back to reference Zhang, S. Qian; Xue, F.; Himayat, N. Ageen; Talwar, S.; Kung, H.T.: A machine learning assisted cell selection method for drones in cellular networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018) Zhang, S. Qian; Xue, F.; Himayat, N. Ageen; Talwar, S.; Kung, H.T.: A machine learning assisted cell selection method for drones in cellular networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018)
56.
go back to reference Chen, Y.; Lin, X.; Khan, T.; Mozaffari, M.: Efficient drone mobility support using reinforcement learning. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2020) Chen, Y.; Lin, X.; Khan, T.; Mozaffari, M.: Efficient drone mobility support using reinforcement learning. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2020)
57.
go back to reference Zeng, Y.; Xu, X.: Path design for cellular-connected UAV with reinforcement learning. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019) Zeng, Y.; Xu, X.: Path design for cellular-connected UAV with reinforcement learning. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)
58.
go back to reference Esrafilian, O.; Gangula, R.; Gesbert, D.: Learning to communicate in uav-aided wireless networks: map-based approaches. IEEE Internet Things J. 6(2), 1791–1802 (2019) Esrafilian, O.; Gangula, R.; Gesbert, D.: Learning to communicate in uav-aided wireless networks: map-based approaches. IEEE Internet Things J. 6(2), 1791–1802 (2019)
59.
go back to reference Cui, J.; Ding, Z.; Deng, Y.; Nallanathan, A.; Hanzo, L.: Adaptive UAV-trajectory optimization under quality of service constraints: a model-free solution. IEEE Access 8, 112253–112265 (2020) Cui, J.; Ding, Z.; Deng, Y.; Nallanathan, A.; Hanzo, L.: Adaptive UAV-trajectory optimization under quality of service constraints: a model-free solution. IEEE Access 8, 112253–112265 (2020)
60.
go back to reference Bayerlein, H.; De Kerret, P.; Gesbert, D.: Trajectory optimization for autonomous flying base station via reinforcement learning. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018) Bayerlein, H.; De Kerret, P.; Gesbert, D.: Trajectory optimization for autonomous flying base station via reinforcement learning. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018)
61.
go back to reference Dai, H.; Zhang, H.; Hua, M.; Li, C.; Huang, Y.; Wang, B.: How to deploy multiple UAVs for providing communication service in an unknown region? IEEE Wirel. Commun. Lett. 8(4), 1276–1279 (2019) Dai, H.; Zhang, H.; Hua, M.; Li, C.; Huang, Y.; Wang, B.: How to deploy multiple UAVs for providing communication service in an unknown region? IEEE Wirel. Commun. Lett. 8(4), 1276–1279 (2019)
62.
go back to reference Zhao, N.; Cheng, Y.; Pei, Y.; Liang, Y.; Niyato, D.: Deep reinforcement learning for trajectory design and power allocation in UAV networks. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020) Zhao, N.; Cheng, Y.; Pei, Y.; Liang, Y.; Niyato, D.: Deep reinforcement learning for trajectory design and power allocation in UAV networks. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020)
63.
go back to reference Khamidehi, B.; Sousa, E.S.: Reinforcement learning-based trajectory design for the aerial base stations. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6 (2019) Khamidehi, B.; Sousa, E.S.: Reinforcement learning-based trajectory design for the aerial base stations. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6 (2019)
64.
go back to reference Liu, X.; Liu, Y.; Chen, Y.; Hanzo, L.: Trajectory design and power control for multi-UAV assisted wireless networks: a machine learning approach. IEEE Trans. Veh. Technol. 68(8), 7957–7969 (2019) Liu, X.; Liu, Y.; Chen, Y.; Hanzo, L.: Trajectory design and power control for multi-UAV assisted wireless networks: a machine learning approach. IEEE Trans. Veh. Technol. 68(8), 7957–7969 (2019)
65.
go back to reference Liu, X.; Liu, Y.; Chen, Y.: Reinforcement learning in multiple-UAV networks: devlopement and movement design. IEEE Trans. Veh. Technol. 68(8), 8036–8049 (2019) Liu, X.; Liu, Y.; Chen, Y.: Reinforcement learning in multiple-UAV networks: devlopement and movement design. IEEE Trans. Veh. Technol. 68(8), 8036–8049 (2019)
66.
go back to reference Liu, X.; Chen, M.; Yin, C.: Optimized trajectory design in UAV based cellular networks: a double q-learning approach. In: 2018 IEEE International Conference on Communication Systems (ICCS), pp. 13–18 (2018) Liu, X.; Chen, M.; Yin, C.: Optimized trajectory design in UAV based cellular networks: a double q-learning approach. In: 2018 IEEE International Conference on Communication Systems (ICCS), pp. 13–18 (2018)
67.
go back to reference Challita, U.; Saad, W.; Bettstetter, C.: Interference management for cellular-connected UAVs: a deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 18(4), 2125–2140 (2019) Challita, U.; Saad, W.; Bettstetter, C.: Interference management for cellular-connected UAVs: a deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 18(4), 2125–2140 (2019)
68.
go back to reference Chen, M.; Saad, W.; Yin, C.: Echo state learning for wireless virtual reality resource allocation in UAV-enabled LTE-U networks. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018) Chen, M.; Saad, W.; Yin, C.: Echo state learning for wireless virtual reality resource allocation in UAV-enabled LTE-U networks. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018)
69.
go back to reference Wu, J.; Yu, P.; Feng, L.; Zhou, F.; Li, W.; Qiu, X.: 3d aerial base station position planning based on deep q-network for capacity enhancement. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 482–487 (2019) Wu, J.; Yu, P.; Feng, L.; Zhou, F.; Li, W.; Qiu, X.: 3d aerial base station position planning based on deep q-network for capacity enhancement. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 482–487 (2019)
70.
go back to reference Athukoralage, D.; Guvenc, I.; Saad, W.; Bennis, M.: Regret based learning for UAV assisted LTE-U/WIFI public safety networks. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7 (2016) Athukoralage, D.; Guvenc, I.; Saad, W.; Bennis, M.: Regret based learning for UAV assisted LTE-U/WIFI public safety networks. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7 (2016)
71.
go back to reference Lu, J.; Wan, S.; Chen, X.; Chen, Z.; Fan, P.; Letaief, K.B.: Beyond empirical models: pattern formation driven placement of UAV base stations. IEEE Trans. Wirel. Commun. 17(6), 3641–3655 (2018) Lu, J.; Wan, S.; Chen, X.; Chen, Z.; Fan, P.; Letaief, K.B.: Beyond empirical models: pattern formation driven placement of UAV base stations. IEEE Trans. Wirel. Commun. 17(6), 3641–3655 (2018)
72.
go back to reference Moorthy, S.K.; Guan, Z.: Flytera: echo state learning for joint access and flight control in THZ-enabled drone networks. In: 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9 (2020) Moorthy, S.K.; Guan, Z.: Flytera: echo state learning for joint access and flight control in THZ-enabled drone networks. In: 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9 (2020)
73.
go back to reference Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: A hybrid approach of learning and model-based channel prediction for communication relay UAVs in dynamic urban environments. IEEE Robot. Autom. Lett. 4(3), 2370–2377 (2019) Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: A hybrid approach of learning and model-based channel prediction for communication relay UAVs in dynamic urban environments. IEEE Robot. Autom. Lett. 4(3), 2370–2377 (2019)
74.
go back to reference Chen, J.; Yatnalli, U.; Gesbert, D.: Learning radio maps for UAV-aided wireless networks: a segmented regression approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017) Chen, J.; Yatnalli, U.; Gesbert, D.: Learning radio maps for UAV-aided wireless networks: a segmented regression approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017)
75.
go back to reference Khamidehi, B.; Sousa, E.: Federated learning for cellular-connected UAVs: radio mapping and path planning. In: GLOBECOM 2020—2020 IEEE Global Communications Conference, pp. 1–6 (2020) Khamidehi, B.; Sousa, E.: Federated learning for cellular-connected UAVs: radio mapping and path planning. In: GLOBECOM 2020—2020 IEEE Global Communications Conference, pp. 1–6 (2020)
76.
go back to reference Wang, J.; Li, Y.; Adege, A.B.; Wang, L.; Jeng, S.; Chen, J.: Machine learning based rapid 3d channel modeling for UAV communication networks. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–5 (2019) Wang, J.; Li, Y.; Adege, A.B.; Wang, L.; Jeng, S.; Chen, J.: Machine learning based rapid 3d channel modeling for UAV communication networks. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–5 (2019)
77.
go back to reference Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: Gaussian process based channel prediction for communication-relay UAV in urban environments. IEEE Trans. Aerosp. Electron. Syst. 56(1), 313–325 (2020) Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: Gaussian process based channel prediction for communication-relay UAV in urban environments. IEEE Trans. Aerosp. Electron. Syst. 56(1), 313–325 (2020)
78.
go back to reference Yang, G.; Zhang, Y.; He, Z.; Wen, J.; Ji, Z.; Li, Y.: Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Microw. Antennas Propag. 13(8), 1113–1121 (2019) Yang, G.; Zhang, Y.; He, Z.; Wen, J.; Ji, Z.; Li, Y.: Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Microw. Antennas Propag. 13(8), 1113–1121 (2019)
79.
go back to reference Zhang, J.; Chuai, G.; Gao, W.: Power control and clustering-based interference management for UAV-assisted networks. Sensors 20, 3864 (2020) Zhang, J.; Chuai, G.; Gao, W.: Power control and clustering-based interference management for UAV-assisted networks. Sensors 20, 3864 (2020)
80.
go back to reference Qi, H.; Hu, Z.; Huang, H.; Wen, X.; Lu, Z.: Energy efficient 3-d UAV control for persistent communication service and fairness: a deep reinforcement learning approach. IEEE Access 8, 53172–53184 (2020) Qi, H.; Hu, Z.; Huang, H.; Wen, X.; Lu, Z.: Energy efficient 3-d UAV control for persistent communication service and fairness: a deep reinforcement learning approach. IEEE Access 8, 53172–53184 (2020)
81.
go back to reference Zhu, X.; Qi, F.; Feng, Y.: Deep-learning-based multiple beamforming for 5g UAV IOT networks. IEEE Netw. 34(5), 32–38 (2020) Zhu, X.; Qi, F.; Feng, Y.: Deep-learning-based multiple beamforming for 5g UAV IOT networks. IEEE Netw. 34(5), 32–38 (2020)
82.
go back to reference Amorim, R.; Wigard, J.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.: Machine-learning identification of airborne UAV-UES based on LTE radio measurements. In: 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2017) Amorim, R.; Wigard, J.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.: Machine-learning identification of airborne UAV-UES based on LTE radio measurements. In: 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2017)
83.
go back to reference Zhang, H.; Cao, C.; Xu, L.; Gulliver, T.A.: A UAV detection algorithm based on an artificial neural network. IEEE Access 6, 24720–24728 (2018) Zhang, H.; Cao, C.; Xu, L.; Gulliver, T.A.: A UAV detection algorithm based on an artificial neural network. IEEE Access 6, 24720–24728 (2018)
84.
go back to reference Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I.: Micro-UAV detection and classification from RF fingerprints using machine learning techniques. In: 2019 IEEE Aerospace Conference, pp. 1–13 (2019) Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I.: Micro-UAV detection and classification from RF fingerprints using machine learning techniques. In: 2019 IEEE Aerospace Conference, pp. 1–13 (2019)
85.
go back to reference Al-Sa’d, M.F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A.: Rf-based drone detection and identification using deep learning approaches: an initiative towards a large open source drone database. Future Gener. Comput. Syst. 100, 86–97 (2019) Al-Sa’d, M.F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A.: Rf-based drone detection and identification using deep learning approaches: an initiative towards a large open source drone database. Future Gener. Comput. Syst. 100, 86–97 (2019)
86.
go back to reference Alipour-Fanid, A.; Dabaghchian, M.; Wang, N.; Wang, P.; Zhao, L.; Zeng, K.: Machine learning-based delay-aware UAV detection over encrypted wi-fi traffic. In: 2019 IEEE Conference on Communications and Network Security (CNS), pp. 1–7 (2019) Alipour-Fanid, A.; Dabaghchian, M.; Wang, N.; Wang, P.; Zhao, L.; Zeng, K.: Machine learning-based delay-aware UAV detection over encrypted wi-fi traffic. In: 2019 IEEE Conference on Communications and Network Security (CNS), pp. 1–7 (2019)
87.
go back to reference Yang, B.; Matson, E.T.; Smith, A.H.; Dietz, J.E.; Gallagher, J.C.: UAV detection system with multiple acoustic nodes using machine learning models. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 493–498 (2019) Yang, B.; Matson, E.T.; Smith, A.H.; Dietz, J.E.; Gallagher, J.C.: UAV detection system with multiple acoustic nodes using machine learning models. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 493–498 (2019)
88.
go back to reference Sciancalepore, S.; Ibrahim, O.A.; Oligeri, G., Di Pietro; R.: Detecting drones status via encrypted traffic analysis. In: Proceedings of the ACM Workshop on Wireless Security and Machine Learning, WiseML: New York, NY, USA, pp. 67–72 (2019) Sciancalepore, S.; Ibrahim, O.A.; Oligeri, G., Di Pietro; R.: Detecting drones status via encrypted traffic analysis. In: Proceedings of the ACM Workshop on Wireless Security and Machine Learning, WiseML: New York, NY, USA, pp. 67–72 (2019)
89.
go back to reference Shorten, D.; Williamson, A.; Srivastava, S.; Murray, JC.: Localisation of drone controllers from RF signals using a deep learning approach. In: Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, PRAI: New York, NY, USA, pp. 89–97 (2018) Shorten, D.; Williamson, A.; Srivastava, S.; Murray, JC.: Localisation of drone controllers from RF signals using a deep learning approach. In: Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, PRAI: New York, NY, USA, pp. 89–97 (2018)
90.
go back to reference Min, M.; Xiao, L.; Xu, D.; Huang, L.; Peng, M.: Learning-based defense against malicious unmanned aerial vehicles. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2018) Min, M.; Xiao, L.; Xu, D.; Huang, L.; Peng, M.: Learning-based defense against malicious unmanned aerial vehicles. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2018)
93.
go back to reference Park, J.; Kim, Y.; Seok, J.: Prediction of information propagation in a drone network by using machine learning. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 147–149 (2016) Park, J.; Kim, Y.; Seok, J.: Prediction of information propagation in a drone network by using machine learning. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 147–149 (2016)
94.
go back to reference Patel, M.; Joubert, J.; Sprecher, N.; Ramos, J.R.; Abeta, S.; Neal, A.; Hu, Y.; Hédé, P.; Thornton, C.; Naughton, B.; Chan, C.; Young, V.; Tan, S.J.; Lynch, D.; Musiol, T.; Manzanares, C.; Raus, U.: Mobile-edge computing introductory technical white paper. ETSI (2014) Patel, M.; Joubert, J.; Sprecher, N.; Ramos, J.R.; Abeta, S.; Neal, A.; Hu, Y.; Hédé, P.; Thornton, C.; Naughton, B.; Chan, C.; Young, V.; Tan, S.J.; Lynch, D.; Musiol, T.; Manzanares, C.; Raus, U.: Mobile-edge computing introductory technical white paper. ETSI (2014)
95.
go back to reference Zhang, Q.; Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M.: Machine learning for predictive on-demand deployment of UAVs for wireless communications. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018) Zhang, Q.; Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M.: Machine learning for predictive on-demand deployment of UAVs for wireless communications. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018)
96.
go back to reference Colonnese, S.; Cuomo, F.; Pagliari, G.; Chiaraviglio, L.: Q-square: a q-learning approach to provide a QOE aware UAV flight path in cellular networks. Ad Hoc Netw. 91, 101872 (2019) Colonnese, S.; Cuomo, F.; Pagliari, G.; Chiaraviglio, L.: Q-square: a q-learning approach to provide a QOE aware UAV flight path in cellular networks. Ad Hoc Netw. 91, 101872 (2019)
97.
go back to reference Ng, J.S.; Lim, W.B.; Dai, H.-N.; Xiong, Z.; Huang, J.; Niyato, D.; Hua, X.-S.; Leung, C.; Miao, C.: Joint auction-coalition formation framework for communication-efficient federated learning in UAV-enabled internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(4), 2326–2344 (2021). https://doi.org/10.1109/TITS.2020.3041345CrossRef Ng, J.S.; Lim, W.B.; Dai, H.-N.; Xiong, Z.; Huang, J.; Niyato, D.; Hua, X.-S.; Leung, C.; Miao, C.: Joint auction-coalition formation framework for communication-efficient federated learning in UAV-enabled internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(4), 2326–2344 (2021). https://​doi.​org/​10.​1109/​TITS.​2020.​3041345CrossRef
98.
go back to reference Dai, H.; Zhang, H.; Wang, B.; Yang, L.: The multi-objective deployment optimization of UAV-mounted cache-enabled base stations. Phys. Commun. 34, 114–120 (2019) Dai, H.; Zhang, H.; Wang, B.; Yang, L.: The multi-objective deployment optimization of UAV-mounted cache-enabled base stations. Phys. Commun. 34, 114–120 (2019)
100.
go back to reference Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource and cache management in LTE-U unmanned aerial vehicle (UAV) networks. IEEE Trans. Wirel. Commun. 18(3), 1504–1517 (2019) Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource and cache management in LTE-U unmanned aerial vehicle (UAV) networks. IEEE Trans. Wirel. Commun. 18(3), 1504–1517 (2019)
101.
go back to reference Xinghui, J.Y.; GaoxiangWu, Y.; Hassan, M.M.; Almogren, A.; Guna, J.: Application of reinforcement learning in UAV cluster task scheduling. Future Gener. Comput. Syst. 95, 140–148 (2019) Xinghui, J.Y.; GaoxiangWu, Y.; Hassan, M.M.; Almogren, A.; Guna, J.: Application of reinforcement learning in UAV cluster task scheduling. Future Gener. Comput. Syst. 95, 140–148 (2019)
102.
go back to reference Hu, L.; Tian, Y.; Yang, J.; Taleb, T.; Xiang, L.; Hao, Y.: Ready player one: UAV-clustering-based multi-task offloading for vehicular VR/AR gaming. IEEE Network 33(3), 42–48 (2019) Hu, L.; Tian, Y.; Yang, J.; Taleb, T.; Xiang, L.; Hao, Y.: Ready player one: UAV-clustering-based multi-task offloading for vehicular VR/AR gaming. IEEE Network 33(3), 42–48 (2019)
103.
go back to reference Faraci, G.; Grasso, C.; Schembra, G.: Design of a 5g network slice extension with MEC UAVS managed with reinforcement learning. IEEE J. Sel. Areas Commun. 38(10), 2356–2371 (2020) Faraci, G.; Grasso, C.; Schembra, G.: Design of a 5g network slice extension with MEC UAVS managed with reinforcement learning. IEEE J. Sel. Areas Commun. 38(10), 2356–2371 (2020)
Metadata
Title
UAV Communications with Machine Learning: Challenges, Applications and Open Issues
Authors
Sana Ben Aissa
Asma Ben Letaifa
Publication date
03-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05932-w

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Research Article-Computer Engineering And Computer Science

Intelligent Framework for Prediction of Heart Disease using Deep Learning

Premium Partners