Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 2/2022

03.08.2021 | Research Article-Computer Engineering and Computer Science

UAV Communications with Machine Learning: Challenges, Applications and Open Issues

verfasst von: Sana Ben Aissa, Asma Ben Letaifa

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unmanned aerial vehicles (UAV) have recently proved their ability to afford reliable and cost-effective solutions for many real-world scenarios. The autonomy, mobility and flexibility nature along with communications interoperability have made UAV able to provide a large variety of services. Awareness of context changes and adaptability to current services requirements are the key to UAVs’ deployment success. For this reason, machine learning (ML) has been widely used in overcoming the challenges that UAV faces in mobility, communication and resources management. This paper will mainly focus on the proposed UAV-centric ML solutions and their satisfaction with network requirements taking into consideration UAVs’ roles, collaboration, cooperation and network changing contexts. Solutions proposed in air to air, air to ground and ground to air communications as well as UAVs-enabled mobile edge computing are investigated for possible future insights. Future works will indeed highlight the need of UAVs’ cooperation in the emergent 5G/6G networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sánchez-García, J.; García-Campos, J.M.; Arzamendia, M.; Reina, D.G.; Toral, S.L.; Gregor, D.: A survey on unmanned aerial and aquatic vehicle multi-hop networks: wireless communications, evaluation tools and applications. Comput. Commun. 119, 43–65 (2018) Sánchez-García, J.; García-Campos, J.M.; Arzamendia, M.; Reina, D.G.; Toral, S.L.; Gregor, D.: A survey on unmanned aerial and aquatic vehicle multi-hop networks: wireless communications, evaluation tools and applications. Comput. Commun. 119, 43–65 (2018)
3.
Zurück zum Zitat Gu, J.; Su, T.; Wang, Q.; Du, X.; Guizani, M.: Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Commun. Mag. 56(4), 82–89 (2018) Gu, J.; Su, T.; Wang, Q.; Du, X.; Guizani, M.: Multiple moving targets surveillance based on a cooperative network for multi-UAV. IEEE Commun. Mag. 56(4), 82–89 (2018)
4.
Zurück zum Zitat Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A.: LSAR: multi-UAV collaboration for search and rescue missions. IEEE Access 7, 55817–55832 (2019) Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A.: LSAR: multi-UAV collaboration for search and rescue missions. IEEE Access 7, 55817–55832 (2019)
5.
Zurück zum Zitat Gupta, L.; Jain, R.; Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016) Gupta, L.; Jain, R.; Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016)
6.
Zurück zum Zitat Teague, E.; Kewley, R.: Swarming Unmanned Aircraft Systems (2008) Teague, E.; Kewley, R.: Swarming Unmanned Aircraft Systems (2008)
7.
Zurück zum Zitat Tahir, A.; Böling, J.; Haghbayan, M.-H.; Toivonen, H.T.; Plosila, J.: Swarms of unmanned aerial vehicles: a survey. J. Ind. Inf. Integr. 16, 100106 (2019) Tahir, A.; Böling, J.; Haghbayan, M.-H.; Toivonen, H.T.; Plosila, J.: Swarms of unmanned aerial vehicles: a survey. J. Ind. Inf. Integr. 16, 100106 (2019)
8.
Zurück zum Zitat Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J.: Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019) Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J.: Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019)
9.
Zurück zum Zitat Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.; Debbah, M.: A tutorial on UAVS for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019) Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.; Debbah, M.: A tutorial on UAVS for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019)
10.
Zurück zum Zitat Nguyen, H.C.; Amorim, R.; Wigard, J.; KováCs, I.Z.; Sørensen, T.B.; Mogensen, P.E.: How to ensure reliable connectivity for aerial vehicles over cellular networks. IEEE Access 6, 12304–12317 (2018) Nguyen, H.C.; Amorim, R.; Wigard, J.; KováCs, I.Z.; Sørensen, T.B.; Mogensen, P.E.: How to ensure reliable connectivity for aerial vehicles over cellular networks. IEEE Access 6, 12304–12317 (2018)
11.
Zurück zum Zitat Chen, M.; Mozaffari, M.; Saad, W.; Yin, C.; Debbah, M.; Hong, C.S.: Caching in the sky: proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun. 35(5), 1046–1061 (2017) Chen, M.; Mozaffari, M.; Saad, W.; Yin, C.; Debbah, M.; Hong, C.S.: Caching in the sky: proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun. 35(5), 1046–1061 (2017)
12.
Zurück zum Zitat Wang, Y.; Feng, C.; Zhang, T.; Liu, Y.; Nallanathan, A.: QOE based network deployment and caching placement for cache-enabling UAV networks. In: ICC 2020—2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020) Wang, Y.; Feng, C.; Zhang, T.; Liu, Y.; Nallanathan, A.: QOE based network deployment and caching placement for cache-enabling UAV networks. In: ICC 2020—2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020)
13.
Zurück zum Zitat Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource allocation in a network of cache-enabled LTE-u UAVS. In: IEEE Global Communications Conference, pp. 1–6 (2017) Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource allocation in a network of cache-enabled LTE-u UAVS. In: IEEE Global Communications Conference, pp. 1–6 (2017)
14.
Zurück zum Zitat Hossein Motlagh, N.; Taleb, T.; Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3(6), 899–922 (2016) Hossein Motlagh, N.; Taleb, T.; Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3(6), 899–922 (2016)
15.
Zurück zum Zitat Luo, C.; Nightingale, J.; Asemota, E.; Grecos, C.: A uav-cloud system for disaster sensing applications. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015) Luo, C.; Nightingale, J.; Asemota, E.; Grecos, C.: A uav-cloud system for disaster sensing applications. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015)
16.
Zurück zum Zitat Mahmoud, S.Y.M.; Mohamed, N.: Toward a cloud platform for UAV resources and services. In: 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA), pp. 23–30 (2015) Mahmoud, S.Y.M.; Mohamed, N.: Toward a cloud platform for UAV resources and services. In: 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA), pp. 23–30 (2015)
17.
Zurück zum Zitat Mach, P.; Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017) Mach, P.; Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)
18.
Zurück zum Zitat Zhou, F.; Wu, Y.; Sun, H.; Chu, Z.: UAV-enabled mobile edge computing: Offloading optimization and trajectory design. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018) Zhou, F.; Wu, Y.; Sun, H.; Chu, Z.: UAV-enabled mobile edge computing: Offloading optimization and trajectory design. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018)
19.
Zurück zum Zitat Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M.: Energy efficient resource allocation in UAV-enabled mobile edge computing networks. IEEE Trans. Wirel. Commun. 18(9), 4576–4589 (2019) Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M.: Energy efficient resource allocation in UAV-enabled mobile edge computing networks. IEEE Trans. Wirel. Commun. 18(9), 4576–4589 (2019)
20.
Zurück zum Zitat Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y.: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018) Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y.: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J. Sel. Areas Commun. 36(9), 1927–1941 (2018)
21.
Zurück zum Zitat Du, Y.; Yang, K.; Wang, K.; Zhang, G.; Zhao, Y.; Chen, D.: Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IOT systems. IEEE Trans. Veh. Technol. 68(10), 10187–10200 (2019) Du, Y.; Yang, K.; Wang, K.; Zhang, G.; Zhao, Y.; Chen, D.: Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IOT systems. IEEE Trans. Veh. Technol. 68(10), 10187–10200 (2019)
22.
Zurück zum Zitat Du, Y.; Wang, K.; Yang, K.; Zhang, G.: Energy-efficient resource allocation in UAV based MEC system for IOT devices. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018) Du, Y.; Wang, K.; Yang, K.; Zhang, G.: Energy-efficient resource allocation in UAV based MEC system for IOT devices. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018)
23.
Zurück zum Zitat Zhou, F.; Hu, R.Q.; Li, Z.; Wang, Y.: Mobile edge computing in unmanned aerial vehicle networks. IEEE Wirel. Commun. 27(1), 140–146 (2020) Zhou, F.; Hu, R.Q.; Li, Z.; Wang, Y.: Mobile edge computing in unmanned aerial vehicle networks. IEEE Wirel. Commun. 27(1), 140–146 (2020)
24.
Zurück zum Zitat Alpaydin, E.: Introduction to Machine Learning. The MIT Press, New York (2020)MATH Alpaydin, E.: Introduction to Machine Learning. The MIT Press, New York (2020)MATH
25.
Zurück zum Zitat Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K.: Artificial intelligence-enabled intelligent 6g networks. arXiv:1912.05744 (2019) Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K.: Artificial intelligence-enabled intelligent 6g networks. arXiv:​1912.​05744 (2019)
26.
Zurück zum Zitat Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Cervera, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, 3296874:1–3296874:13 (2017) Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Cervera, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, 3296874:1–3296874:13 (2017)
31.
Zurück zum Zitat Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G.: A survey on machine-learning techniques for UAV-based communications. Sensors 19, 5170 (2019) Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G.: A survey on machine-learning techniques for UAV-based communications. Sensors 19, 5170 (2019)
32.
Zurück zum Zitat Zohdi, T.I.: The Game of Drones: rapid agent-based machine-learning models for multi-UAV path planning. Comput. Mech. 65(1), 217–228 (2019)MathSciNetMATH Zohdi, T.I.: The Game of Drones: rapid agent-based machine-learning models for multi-UAV path planning. Comput. Mech. 65(1), 217–228 (2019)MathSciNetMATH
33.
35.
Zurück zum Zitat Hu, J.; Zhang, H.; Song, L.: Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-and-send protocol. IEEE Internet Things J. 6(4), 6177–6189 (2019) Hu, J.; Zhang, H.; Song, L.: Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-and-send protocol. IEEE Internet Things J. 6(4), 6177–6189 (2019)
36.
Zurück zum Zitat Klaine, P.V.; Nadas, J.; Souza, R.D.; Imran, M.: Distributed drone base station positioning for emergency cellular networks using reinforcement learning. Cognit. Comput. 10, 790–804 (2018) Klaine, P.V.; Nadas, J.; Souza, R.D.; Imran, M.: Distributed drone base station positioning for emergency cellular networks using reinforcement learning. Cognit. Comput. 10, 790–804 (2018)
39.
Zurück zum Zitat Peng, H.; Razi, A.; Afghah, F.; Ashdown, J.: A unified framework for joint mobility prediction and object profiling of drones in UAV networks. J. Commun. Netw. 20(5), 434–442 (2018) Peng, H.; Razi, A.; Afghah, F.; Ashdown, J.: A unified framework for joint mobility prediction and object profiling of drones in UAV networks. J. Commun. Netw. 20(5), 434–442 (2018)
40.
Zurück zum Zitat Zheng, Z.; Sangaiah, A.K.; Wang, T.: Adaptive communication protocols in flying ad hoc network. IEEE Commun. Mag. 56(1), 136–142 (2018) Zheng, Z.; Sangaiah, A.K.; Wang, T.: Adaptive communication protocols in flying ad hoc network. IEEE Commun. Mag. 56(1), 136–142 (2018)
41.
Zurück zum Zitat Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Luo, X.: Air-to-air path loss prediction based on machine learning methods in urban environments. Wirel. Commun. Mob. Comput. 2018, 8489326:1–8489326:9 (2018) Zhang, Y.; Wen, J.; Yang, G.; He, Z.; Luo, X.: Air-to-air path loss prediction based on machine learning methods in urban environments. Wirel. Commun. Mob. Comput. 2018, 8489326:1–8489326:9 (2018)
42.
Zurück zum Zitat Jailton, J.; Carvalho, T.; Araújo, J.; Francês, R.: Relay positioning strategy for traffic data collection of multiple unmanned aerial vehicles using hybrid optimization systems: a fanet-based case study. In: Wireless Communications and Mobile Computing (2017) Jailton, J.; Carvalho, T.; Araújo, J.; Francês, R.: Relay positioning strategy for traffic data collection of multiple unmanned aerial vehicles using hybrid optimization systems: a fanet-based case study. In: Wireless Communications and Mobile Computing (2017)
43.
Zurück zum Zitat Shamsoshoara, A.; Khaledi, M.; Afghah, F.; Razi, A.; Ashdown, J.: Distributed cooperative spectrum sharing in uav networks using multi-agent reinforcement learning. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2019) Shamsoshoara, A.; Khaledi, M.; Afghah, F.; Razi, A.; Ashdown, J.: Distributed cooperative spectrum sharing in uav networks using multi-agent reinforcement learning. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–6 (2019)
44.
Zurück zum Zitat Hoseini, S.A.; Hassan, J.; Bokani, A.; Kanhere, S.S.: Trajectory optimization of flying energy sources using q-learning to recharge hotspot UAVs. In: IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 683–688 (2020) Hoseini, S.A.; Hassan, J.; Bokani, A.; Kanhere, S.S.: Trajectory optimization of flying energy sources using q-learning to recharge hotspot UAVs. In: IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 683–688 (2020)
45.
Zurück zum Zitat Mozaffari, M.; Zadeh, K.; Taleb, A.; Saad, W.; Bennis, M.; Debbah, M.: Beyond 5g with UAVs: foundations of a 3d wireless cellular network. IEEE Trans. Wirel. Commun. 18(1), 357–372 (2019) Mozaffari, M.; Zadeh, K.; Taleb, A.; Saad, W.; Bennis, M.; Debbah, M.: Beyond 5g with UAVs: foundations of a 3d wireless cellular network. IEEE Trans. Wirel. Commun. 18(1), 357–372 (2019)
46.
Zurück zum Zitat Wang, S.; Chen, M.; Yin, C.; Saad, W.; Hong, C.; Cui, S.; Poor, H.: Federated learning for task and resource allocation in wireless high altitude balloon networks. arXiv:2003.09375 (2020) Wang, S.; Chen, M.; Yin, C.; Saad, W.; Hong, C.; Cui, S.; Poor, H.: Federated learning for task and resource allocation in wireless high altitude balloon networks. arXiv:​2003.​09375 (2020)
47.
Zurück zum Zitat Du, W.; Ying, W.; Yang, P.; Cao, X.; Yan, G.; Tang, K.; Wu, D.: Network-based heterogeneous particle swarm optimization and its application in UAV communication coverage. IEEE Trans. Emerg. Top. Comput. Intell. 4(3), 312–323 (2020) Du, W.; Ying, W.; Yang, P.; Cao, X.; Yan, G.; Tang, K.; Wu, D.: Network-based heterogeneous particle swarm optimization and its application in UAV communication coverage. IEEE Trans. Emerg. Top. Comput. Intell. 4(3), 312–323 (2020)
48.
Zurück zum Zitat Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C.: Energy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approach. IEEE J. Sel. Areas Commun. 36(9), 2059–2070 (2018) Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C.: Energy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approach. IEEE J. Sel. Areas Commun. 36(9), 2059–2070 (2018)
49.
Zurück zum Zitat Liu, C.H.; Ma, X.; Gao, X.; Tang, J.: Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning. IEEE Trans. Mob. Comput. 19(6), 1274–1285 (2020) Liu, C.H.; Ma, X.; Gao, X.; Tang, J.: Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning. IEEE Trans. Mob. Comput. 19(6), 1274–1285 (2020)
50.
Zurück zum Zitat Ghanavi, R.; Kalantari, E.; Sabbaghian, M.; Yanikomeroglu, H.; Yongacoglu, A.: Efficient 3d aerial base station placement considering users mobility by reinforcement learning. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018) Ghanavi, R.; Kalantari, E.; Sabbaghian, M.; Yanikomeroglu, H.; Yongacoglu, A.: Efficient 3d aerial base station placement considering users mobility by reinforcement learning. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018)
51.
Zurück zum Zitat Lu, L.; Yang, Z.; Chen, M.; Zang, Z.; Shikh-Bahaei, M.: Machine learning for predictive deployment of UAVs with multiple access. arXiv:2003.02631 (2020) Lu, L.; Yang, Z.; Chen, M.; Zang, Z.; Shikh-Bahaei, M.: Machine learning for predictive deployment of UAVs with multiple access. arXiv:​2003.​02631 (2020)
52.
Zurück zum Zitat Arani, A.H.; Azari, M.M.; Melek, W.; Safavi-Naeini, S.: Learning in the sky: an efficient 3d placement of UAVs. arXiv:2003.02650 (2020) Arani, A.H.; Azari, M.M.; Melek, W.; Safavi-Naeini, S.: Learning in the sky: an efficient 3d placement of UAVs. arXiv:​2003.​02650 (2020)
53.
Zurück zum Zitat Cheng, F.; Zou, D.; Liu, J.; Wang, J.; Zhao, N.: Learning-based user association for dual-UAV enabled wireless networks with d2d connections. IEEE Access 7, 30672–30682 (2019) Cheng, F.; Zou, D.; Liu, J.; Wang, J.; Zhao, N.: Learning-based user association for dual-UAV enabled wireless networks with d2d connections. IEEE Access 7, 30672–30682 (2019)
54.
Zurück zum Zitat Sikeridis, D.; EleniTsiropoulou, E.; Devetsikiotis, M.; Papavassiliou, S.: Self-adaptive energy efficient operation in UAV-assisted public safety networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 1–5, (2018) Sikeridis, D.; EleniTsiropoulou, E.; Devetsikiotis, M.; Papavassiliou, S.: Self-adaptive energy efficient operation in UAV-assisted public safety networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 1–5, (2018)
55.
Zurück zum Zitat Zhang, S. Qian; Xue, F.; Himayat, N. Ageen; Talwar, S.; Kung, H.T.: A machine learning assisted cell selection method for drones in cellular networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018) Zhang, S. Qian; Xue, F.; Himayat, N. Ageen; Talwar, S.; Kung, H.T.: A machine learning assisted cell selection method for drones in cellular networks. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018)
56.
Zurück zum Zitat Chen, Y.; Lin, X.; Khan, T.; Mozaffari, M.: Efficient drone mobility support using reinforcement learning. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2020) Chen, Y.; Lin, X.; Khan, T.; Mozaffari, M.: Efficient drone mobility support using reinforcement learning. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2020)
57.
Zurück zum Zitat Zeng, Y.; Xu, X.: Path design for cellular-connected UAV with reinforcement learning. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019) Zeng, Y.; Xu, X.: Path design for cellular-connected UAV with reinforcement learning. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)
58.
Zurück zum Zitat Esrafilian, O.; Gangula, R.; Gesbert, D.: Learning to communicate in uav-aided wireless networks: map-based approaches. IEEE Internet Things J. 6(2), 1791–1802 (2019) Esrafilian, O.; Gangula, R.; Gesbert, D.: Learning to communicate in uav-aided wireless networks: map-based approaches. IEEE Internet Things J. 6(2), 1791–1802 (2019)
59.
Zurück zum Zitat Cui, J.; Ding, Z.; Deng, Y.; Nallanathan, A.; Hanzo, L.: Adaptive UAV-trajectory optimization under quality of service constraints: a model-free solution. IEEE Access 8, 112253–112265 (2020) Cui, J.; Ding, Z.; Deng, Y.; Nallanathan, A.; Hanzo, L.: Adaptive UAV-trajectory optimization under quality of service constraints: a model-free solution. IEEE Access 8, 112253–112265 (2020)
60.
Zurück zum Zitat Bayerlein, H.; De Kerret, P.; Gesbert, D.: Trajectory optimization for autonomous flying base station via reinforcement learning. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018) Bayerlein, H.; De Kerret, P.; Gesbert, D.: Trajectory optimization for autonomous flying base station via reinforcement learning. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2018)
61.
Zurück zum Zitat Dai, H.; Zhang, H.; Hua, M.; Li, C.; Huang, Y.; Wang, B.: How to deploy multiple UAVs for providing communication service in an unknown region? IEEE Wirel. Commun. Lett. 8(4), 1276–1279 (2019) Dai, H.; Zhang, H.; Hua, M.; Li, C.; Huang, Y.; Wang, B.: How to deploy multiple UAVs for providing communication service in an unknown region? IEEE Wirel. Commun. Lett. 8(4), 1276–1279 (2019)
62.
Zurück zum Zitat Zhao, N.; Cheng, Y.; Pei, Y.; Liang, Y.; Niyato, D.: Deep reinforcement learning for trajectory design and power allocation in UAV networks. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020) Zhao, N.; Cheng, Y.; Pei, Y.; Liang, Y.; Niyato, D.: Deep reinforcement learning for trajectory design and power allocation in UAV networks. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020)
63.
Zurück zum Zitat Khamidehi, B.; Sousa, E.S.: Reinforcement learning-based trajectory design for the aerial base stations. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6 (2019) Khamidehi, B.; Sousa, E.S.: Reinforcement learning-based trajectory design for the aerial base stations. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6 (2019)
64.
Zurück zum Zitat Liu, X.; Liu, Y.; Chen, Y.; Hanzo, L.: Trajectory design and power control for multi-UAV assisted wireless networks: a machine learning approach. IEEE Trans. Veh. Technol. 68(8), 7957–7969 (2019) Liu, X.; Liu, Y.; Chen, Y.; Hanzo, L.: Trajectory design and power control for multi-UAV assisted wireless networks: a machine learning approach. IEEE Trans. Veh. Technol. 68(8), 7957–7969 (2019)
65.
Zurück zum Zitat Liu, X.; Liu, Y.; Chen, Y.: Reinforcement learning in multiple-UAV networks: devlopement and movement design. IEEE Trans. Veh. Technol. 68(8), 8036–8049 (2019) Liu, X.; Liu, Y.; Chen, Y.: Reinforcement learning in multiple-UAV networks: devlopement and movement design. IEEE Trans. Veh. Technol. 68(8), 8036–8049 (2019)
66.
Zurück zum Zitat Liu, X.; Chen, M.; Yin, C.: Optimized trajectory design in UAV based cellular networks: a double q-learning approach. In: 2018 IEEE International Conference on Communication Systems (ICCS), pp. 13–18 (2018) Liu, X.; Chen, M.; Yin, C.: Optimized trajectory design in UAV based cellular networks: a double q-learning approach. In: 2018 IEEE International Conference on Communication Systems (ICCS), pp. 13–18 (2018)
67.
Zurück zum Zitat Challita, U.; Saad, W.; Bettstetter, C.: Interference management for cellular-connected UAVs: a deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 18(4), 2125–2140 (2019) Challita, U.; Saad, W.; Bettstetter, C.: Interference management for cellular-connected UAVs: a deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 18(4), 2125–2140 (2019)
68.
Zurück zum Zitat Chen, M.; Saad, W.; Yin, C.: Echo state learning for wireless virtual reality resource allocation in UAV-enabled LTE-U networks. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018) Chen, M.; Saad, W.; Yin, C.: Echo state learning for wireless virtual reality resource allocation in UAV-enabled LTE-U networks. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6 (2018)
69.
Zurück zum Zitat Wu, J.; Yu, P.; Feng, L.; Zhou, F.; Li, W.; Qiu, X.: 3d aerial base station position planning based on deep q-network for capacity enhancement. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 482–487 (2019) Wu, J.; Yu, P.; Feng, L.; Zhou, F.; Li, W.; Qiu, X.: 3d aerial base station position planning based on deep q-network for capacity enhancement. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 482–487 (2019)
70.
Zurück zum Zitat Athukoralage, D.; Guvenc, I.; Saad, W.; Bennis, M.: Regret based learning for UAV assisted LTE-U/WIFI public safety networks. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7 (2016) Athukoralage, D.; Guvenc, I.; Saad, W.; Bennis, M.: Regret based learning for UAV assisted LTE-U/WIFI public safety networks. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7 (2016)
71.
Zurück zum Zitat Lu, J.; Wan, S.; Chen, X.; Chen, Z.; Fan, P.; Letaief, K.B.: Beyond empirical models: pattern formation driven placement of UAV base stations. IEEE Trans. Wirel. Commun. 17(6), 3641–3655 (2018) Lu, J.; Wan, S.; Chen, X.; Chen, Z.; Fan, P.; Letaief, K.B.: Beyond empirical models: pattern formation driven placement of UAV base stations. IEEE Trans. Wirel. Commun. 17(6), 3641–3655 (2018)
72.
Zurück zum Zitat Moorthy, S.K.; Guan, Z.: Flytera: echo state learning for joint access and flight control in THZ-enabled drone networks. In: 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9 (2020) Moorthy, S.K.; Guan, Z.: Flytera: echo state learning for joint access and flight control in THZ-enabled drone networks. In: 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9 (2020)
73.
Zurück zum Zitat Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: A hybrid approach of learning and model-based channel prediction for communication relay UAVs in dynamic urban environments. IEEE Robot. Autom. Lett. 4(3), 2370–2377 (2019) Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: A hybrid approach of learning and model-based channel prediction for communication relay UAVs in dynamic urban environments. IEEE Robot. Autom. Lett. 4(3), 2370–2377 (2019)
74.
Zurück zum Zitat Chen, J.; Yatnalli, U.; Gesbert, D.: Learning radio maps for UAV-aided wireless networks: a segmented regression approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017) Chen, J.; Yatnalli, U.; Gesbert, D.: Learning radio maps for UAV-aided wireless networks: a segmented regression approach. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017)
75.
Zurück zum Zitat Khamidehi, B.; Sousa, E.: Federated learning for cellular-connected UAVs: radio mapping and path planning. In: GLOBECOM 2020—2020 IEEE Global Communications Conference, pp. 1–6 (2020) Khamidehi, B.; Sousa, E.: Federated learning for cellular-connected UAVs: radio mapping and path planning. In: GLOBECOM 2020—2020 IEEE Global Communications Conference, pp. 1–6 (2020)
76.
Zurück zum Zitat Wang, J.; Li, Y.; Adege, A.B.; Wang, L.; Jeng, S.; Chen, J.: Machine learning based rapid 3d channel modeling for UAV communication networks. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–5 (2019) Wang, J.; Li, Y.; Adege, A.B.; Wang, L.; Jeng, S.; Chen, J.: Machine learning based rapid 3d channel modeling for UAV communication networks. In: 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 1–5 (2019)
77.
Zurück zum Zitat Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: Gaussian process based channel prediction for communication-relay UAV in urban environments. IEEE Trans. Aerosp. Electron. Syst. 56(1), 313–325 (2020) Ladosz, P.; Oh, H.; Zheng, G.; Chen, W.: Gaussian process based channel prediction for communication-relay UAV in urban environments. IEEE Trans. Aerosp. Electron. Syst. 56(1), 313–325 (2020)
78.
Zurück zum Zitat Yang, G.; Zhang, Y.; He, Z.; Wen, J.; Ji, Z.; Li, Y.: Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Microw. Antennas Propag. 13(8), 1113–1121 (2019) Yang, G.; Zhang, Y.; He, Z.; Wen, J.; Ji, Z.; Li, Y.: Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Microw. Antennas Propag. 13(8), 1113–1121 (2019)
79.
Zurück zum Zitat Zhang, J.; Chuai, G.; Gao, W.: Power control and clustering-based interference management for UAV-assisted networks. Sensors 20, 3864 (2020) Zhang, J.; Chuai, G.; Gao, W.: Power control and clustering-based interference management for UAV-assisted networks. Sensors 20, 3864 (2020)
80.
Zurück zum Zitat Qi, H.; Hu, Z.; Huang, H.; Wen, X.; Lu, Z.: Energy efficient 3-d UAV control for persistent communication service and fairness: a deep reinforcement learning approach. IEEE Access 8, 53172–53184 (2020) Qi, H.; Hu, Z.; Huang, H.; Wen, X.; Lu, Z.: Energy efficient 3-d UAV control for persistent communication service and fairness: a deep reinforcement learning approach. IEEE Access 8, 53172–53184 (2020)
81.
Zurück zum Zitat Zhu, X.; Qi, F.; Feng, Y.: Deep-learning-based multiple beamforming for 5g UAV IOT networks. IEEE Netw. 34(5), 32–38 (2020) Zhu, X.; Qi, F.; Feng, Y.: Deep-learning-based multiple beamforming for 5g UAV IOT networks. IEEE Netw. 34(5), 32–38 (2020)
82.
Zurück zum Zitat Amorim, R.; Wigard, J.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.: Machine-learning identification of airborne UAV-UES based on LTE radio measurements. In: 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2017) Amorim, R.; Wigard, J.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.: Machine-learning identification of airborne UAV-UES based on LTE radio measurements. In: 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2017)
83.
Zurück zum Zitat Zhang, H.; Cao, C.; Xu, L.; Gulliver, T.A.: A UAV detection algorithm based on an artificial neural network. IEEE Access 6, 24720–24728 (2018) Zhang, H.; Cao, C.; Xu, L.; Gulliver, T.A.: A UAV detection algorithm based on an artificial neural network. IEEE Access 6, 24720–24728 (2018)
84.
Zurück zum Zitat Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I.: Micro-UAV detection and classification from RF fingerprints using machine learning techniques. In: 2019 IEEE Aerospace Conference, pp. 1–13 (2019) Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I.: Micro-UAV detection and classification from RF fingerprints using machine learning techniques. In: 2019 IEEE Aerospace Conference, pp. 1–13 (2019)
85.
Zurück zum Zitat Al-Sa’d, M.F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A.: Rf-based drone detection and identification using deep learning approaches: an initiative towards a large open source drone database. Future Gener. Comput. Syst. 100, 86–97 (2019) Al-Sa’d, M.F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A.: Rf-based drone detection and identification using deep learning approaches: an initiative towards a large open source drone database. Future Gener. Comput. Syst. 100, 86–97 (2019)
86.
Zurück zum Zitat Alipour-Fanid, A.; Dabaghchian, M.; Wang, N.; Wang, P.; Zhao, L.; Zeng, K.: Machine learning-based delay-aware UAV detection over encrypted wi-fi traffic. In: 2019 IEEE Conference on Communications and Network Security (CNS), pp. 1–7 (2019) Alipour-Fanid, A.; Dabaghchian, M.; Wang, N.; Wang, P.; Zhao, L.; Zeng, K.: Machine learning-based delay-aware UAV detection over encrypted wi-fi traffic. In: 2019 IEEE Conference on Communications and Network Security (CNS), pp. 1–7 (2019)
87.
Zurück zum Zitat Yang, B.; Matson, E.T.; Smith, A.H.; Dietz, J.E.; Gallagher, J.C.: UAV detection system with multiple acoustic nodes using machine learning models. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 493–498 (2019) Yang, B.; Matson, E.T.; Smith, A.H.; Dietz, J.E.; Gallagher, J.C.: UAV detection system with multiple acoustic nodes using machine learning models. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 493–498 (2019)
88.
Zurück zum Zitat Sciancalepore, S.; Ibrahim, O.A.; Oligeri, G., Di Pietro; R.: Detecting drones status via encrypted traffic analysis. In: Proceedings of the ACM Workshop on Wireless Security and Machine Learning, WiseML: New York, NY, USA, pp. 67–72 (2019) Sciancalepore, S.; Ibrahim, O.A.; Oligeri, G., Di Pietro; R.: Detecting drones status via encrypted traffic analysis. In: Proceedings of the ACM Workshop on Wireless Security and Machine Learning, WiseML: New York, NY, USA, pp. 67–72 (2019)
89.
Zurück zum Zitat Shorten, D.; Williamson, A.; Srivastava, S.; Murray, JC.: Localisation of drone controllers from RF signals using a deep learning approach. In: Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, PRAI: New York, NY, USA, pp. 89–97 (2018) Shorten, D.; Williamson, A.; Srivastava, S.; Murray, JC.: Localisation of drone controllers from RF signals using a deep learning approach. In: Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, PRAI: New York, NY, USA, pp. 89–97 (2018)
90.
Zurück zum Zitat Min, M.; Xiao, L.; Xu, D.; Huang, L.; Peng, M.: Learning-based defense against malicious unmanned aerial vehicles. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2018) Min, M.; Xiao, L.; Xu, D.; Huang, L.; Peng, M.: Learning-based defense against malicious unmanned aerial vehicles. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2018)
93.
Zurück zum Zitat Park, J.; Kim, Y.; Seok, J.: Prediction of information propagation in a drone network by using machine learning. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 147–149 (2016) Park, J.; Kim, Y.; Seok, J.: Prediction of information propagation in a drone network by using machine learning. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 147–149 (2016)
94.
Zurück zum Zitat Patel, M.; Joubert, J.; Sprecher, N.; Ramos, J.R.; Abeta, S.; Neal, A.; Hu, Y.; Hédé, P.; Thornton, C.; Naughton, B.; Chan, C.; Young, V.; Tan, S.J.; Lynch, D.; Musiol, T.; Manzanares, C.; Raus, U.: Mobile-edge computing introductory technical white paper. ETSI (2014) Patel, M.; Joubert, J.; Sprecher, N.; Ramos, J.R.; Abeta, S.; Neal, A.; Hu, Y.; Hédé, P.; Thornton, C.; Naughton, B.; Chan, C.; Young, V.; Tan, S.J.; Lynch, D.; Musiol, T.; Manzanares, C.; Raus, U.: Mobile-edge computing introductory technical white paper. ETSI (2014)
95.
Zurück zum Zitat Zhang, Q.; Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M.: Machine learning for predictive on-demand deployment of UAVs for wireless communications. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018) Zhang, Q.; Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M.: Machine learning for predictive on-demand deployment of UAVs for wireless communications. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018)
96.
Zurück zum Zitat Colonnese, S.; Cuomo, F.; Pagliari, G.; Chiaraviglio, L.: Q-square: a q-learning approach to provide a QOE aware UAV flight path in cellular networks. Ad Hoc Netw. 91, 101872 (2019) Colonnese, S.; Cuomo, F.; Pagliari, G.; Chiaraviglio, L.: Q-square: a q-learning approach to provide a QOE aware UAV flight path in cellular networks. Ad Hoc Netw. 91, 101872 (2019)
97.
Zurück zum Zitat Ng, J.S.; Lim, W.B.; Dai, H.-N.; Xiong, Z.; Huang, J.; Niyato, D.; Hua, X.-S.; Leung, C.; Miao, C.: Joint auction-coalition formation framework for communication-efficient federated learning in UAV-enabled internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(4), 2326–2344 (2021). https://doi.org/10.1109/TITS.2020.3041345CrossRef Ng, J.S.; Lim, W.B.; Dai, H.-N.; Xiong, Z.; Huang, J.; Niyato, D.; Hua, X.-S.; Leung, C.; Miao, C.: Joint auction-coalition formation framework for communication-efficient federated learning in UAV-enabled internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(4), 2326–2344 (2021). https://​doi.​org/​10.​1109/​TITS.​2020.​3041345CrossRef
98.
Zurück zum Zitat Dai, H.; Zhang, H.; Wang, B.; Yang, L.: The multi-objective deployment optimization of UAV-mounted cache-enabled base stations. Phys. Commun. 34, 114–120 (2019) Dai, H.; Zhang, H.; Wang, B.; Yang, L.: The multi-objective deployment optimization of UAV-mounted cache-enabled base stations. Phys. Commun. 34, 114–120 (2019)
100.
Zurück zum Zitat Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource and cache management in LTE-U unmanned aerial vehicle (UAV) networks. IEEE Trans. Wirel. Commun. 18(3), 1504–1517 (2019) Chen, M.; Saad, W.; Yin, C.: Liquid state machine learning for resource and cache management in LTE-U unmanned aerial vehicle (UAV) networks. IEEE Trans. Wirel. Commun. 18(3), 1504–1517 (2019)
101.
Zurück zum Zitat Xinghui, J.Y.; GaoxiangWu, Y.; Hassan, M.M.; Almogren, A.; Guna, J.: Application of reinforcement learning in UAV cluster task scheduling. Future Gener. Comput. Syst. 95, 140–148 (2019) Xinghui, J.Y.; GaoxiangWu, Y.; Hassan, M.M.; Almogren, A.; Guna, J.: Application of reinforcement learning in UAV cluster task scheduling. Future Gener. Comput. Syst. 95, 140–148 (2019)
102.
Zurück zum Zitat Hu, L.; Tian, Y.; Yang, J.; Taleb, T.; Xiang, L.; Hao, Y.: Ready player one: UAV-clustering-based multi-task offloading for vehicular VR/AR gaming. IEEE Network 33(3), 42–48 (2019) Hu, L.; Tian, Y.; Yang, J.; Taleb, T.; Xiang, L.; Hao, Y.: Ready player one: UAV-clustering-based multi-task offloading for vehicular VR/AR gaming. IEEE Network 33(3), 42–48 (2019)
103.
Zurück zum Zitat Faraci, G.; Grasso, C.; Schembra, G.: Design of a 5g network slice extension with MEC UAVS managed with reinforcement learning. IEEE J. Sel. Areas Commun. 38(10), 2356–2371 (2020) Faraci, G.; Grasso, C.; Schembra, G.: Design of a 5g network slice extension with MEC UAVS managed with reinforcement learning. IEEE J. Sel. Areas Commun. 38(10), 2356–2371 (2020)
Metadaten
Titel
UAV Communications with Machine Learning: Challenges, Applications and Open Issues
verfasst von
Sana Ben Aissa
Asma Ben Letaifa
Publikationsdatum
03.08.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 2/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05932-w

Weitere Artikel der Ausgabe 2/2022

Arabian Journal for Science and Engineering 2/2022 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

The Role of Vertical Elastic Namenode in Handling Big Data in Small Files

Research Article-Computer Engineering and Computer Science

An Effective Hash-Based Assessment and Recovery Algorithm for Healthcare Systems

Research Article-Computer Engineering and Computer Science

Large-Scale Data Clustering Using Manifold-Regularized Ensemble of Posterior in GAN

Research Article-Computer Engineering and Computer Science

A Two-stage Method of Synchronization Prediction Framework in TDD

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.