Skip to main content
Top

2014 | OriginalPaper | Chapter

18. Use of Receding Horizon Optimal Control to Solve MaxEP-Based Biogeochemistry Problems

Authors : Joseph J. Vallino, Christopher K. Algar, Nuria Fernández González, Julie A. Huber

Published in: Beyond the Second Law

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The maximum entropy production (MaxEP) principle has been applied to steady state systems, but biogeochemical problems of interest are typically transient in nature. To apply MaxEP to biogeochemical reaction networks, we propose that living systems maximum entropy production over appropriate time horizons based on strategic information stored in their genomes, which differentiates them from inanimate chemistry, such as fire, that maximizes entropy production instantaneously. We develop a receding horizon optimal control procedure that maximizes internal entropy production over different intervals of time. This procedure involves optimizing the stoichiometry of a reaction network to determine how biological structure is partitioned to reactions over an interval of time. The modeling work is compared to a methanotrophic microcosm experiment that is being conducted to examine how microbial systems integrate entropy production over time when subject to time varying energy input attained by periodically cycling feed-gas composition. The MaxEP-based model agrees well with experimental results, and model analysis shows that increasing the optimization time horizon increases internal entropy production.
Accepted (July 2012) in: Beyond the Second Law: Entropy Production and Non-Equilibrium Systems. R. C. Dewar, C. H. Lineweaver, R. K. Niven and K. Regenauer-Lieb, Springer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Alberty, R.A.: Thermodynamics of biochemical reactions. Wiley, Hoboken (2003)CrossRef Alberty, R.A.: Thermodynamics of biochemical reactions. Wiley, Hoboken (2003)CrossRef
4.
go back to reference Battley, E.H.: The development of direct and indirect methods for the study of the thermodynamics of microbial growth. Thermochim. Acta 309(1–2), 17–37 (1998)CrossRef Battley, E.H.: The development of direct and indirect methods for the study of the thermodynamics of microbial growth. Thermochim. Acta 309(1–2), 17–37 (1998)CrossRef
5.
go back to reference Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer/’s principle linking information and thermodynamics. Nature 483(7388), 187–189 (2012). doi:10.1038/nature10872 CrossRef Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer/’s principle linking information and thermodynamics. Nature 483(7388), 187–189 (2012). doi:10.​1038/​nature10872 CrossRef
8.
go back to reference Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH
9.
go back to reference Dewar, R.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger. Entropy 11(4), 931–944 (2009). doi:10.3390/e11040931 CrossRef Dewar, R.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don’t shoot the messenger. Entropy 11(4), 931–944 (2009). doi:10.​3390/​e11040931 CrossRef
13.
go back to reference Friedrichs, M.A.M., Dusenberry, J.A., Anderson, L.A., Armstrong, R.A., Chai, F., Christian, J.R., Doney, S.C., Dunne, J., Fujii, M., Hood, R., McGillicuddy, D.J., Jr., Moore, J.K., Schartau, M., Spitz, Y.H., Wiggert, J.D (2007) Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. J.Geophys.Res. 112(C8), C08001 Friedrichs, M.A.M., Dusenberry, J.A., Anderson, L.A., Armstrong, R.A., Chai, F., Christian, J.R., Doney, S.C., Dunne, J., Fujii, M., Hood, R., McGillicuddy, D.J., Jr., Moore, J.K., Schartau, M., Spitz, Y.H., Wiggert, J.D (2007) Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. J.Geophys.Res. 112(C8), C08001
14.
go back to reference Horner, J.D., Gosz, J.R., Cates, R.G.: The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am. Nat. 132(6), 869–883 (1988)CrossRef Horner, J.D., Gosz, J.R., Cates, R.G.: The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am. Nat. 132(6), 869–883 (1988)CrossRef
15.
go back to reference Huber, J.A., Cantin, H.V., Huse, S.M., Mark Welch, D.B., Sogin, M.L., Butterfield, D.A (2010) Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiology Ecology 73(3), 538–549. doi:10.1111/j.1574-6941.2010.00910.x Huber, J.A., Cantin, H.V., Huse, S.M., Mark Welch, D.B., Sogin, M.L., Butterfield, D.A (2010) Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiology Ecology 73(3), 538–549. doi:10.​1111/​j.​1574-6941.​2010.​00910.​x
16.
go back to reference Huber, J.A., Welch, D.B.M., Morrison, H.G., Huse, S.M., Neal, P.R., Butterfield, D.A., Sogin, M.L.: Microbial population structures in the deep marine biosphere. Science 318(5847), 97–100 (2007). doi:10.1126/science.1146689 CrossRef Huber, J.A., Welch, D.B.M., Morrison, H.G., Huse, S.M., Neal, P.R., Butterfield, D.A., Sogin, M.L.: Microbial population structures in the deep marine biosphere. Science 318(5847), 97–100 (2007). doi:10.​1126/​science.​1146689 CrossRef
17.
go back to reference Jaynes, E.T.: The Gibbs paradox. In: Smith, C.R., Erickson, G.J., Neudorfer, P.O. (eds.) Maximum entropy and Bayesian methods, pp. 1–22. Kluwer Academic Publisheres, Dordrecht (1992)CrossRef Jaynes, E.T.: The Gibbs paradox. In: Smith, C.R., Erickson, G.J., Neudorfer, P.O. (eds.) Maximum entropy and Bayesian methods, pp. 1–22. Kluwer Academic Publisheres, Dordrecht (1992)CrossRef
18.
go back to reference Jones, C.G., Lawton, J.H., Shachak, M.: Organisms as ecosystem engineers. Oikos 69(3), 373–386 (1994)CrossRef Jones, C.G., Lawton, J.H., Shachak, M.: Organisms as ecosystem engineers. Oikos 69(3), 373–386 (1994)CrossRef
19.
go back to reference Kleidon, A., Fraedrich, K., Kunz, T., Lunkeit, F.: The atmospheric circulation and states of maximum entropy production. Geophys. Res. Lett. 30(23), 1–4 (2003). doi:10.1029/2003GL018363 CrossRef Kleidon, A., Fraedrich, K., Kunz, T., Lunkeit, F.: The atmospheric circulation and states of maximum entropy production. Geophys. Res. Lett. 30(23), 1–4 (2003). doi:10.​1029/​2003GL018363 CrossRef
20.
go back to reference Kondepudi, D., Prigogine, I.: Modern thermodynamics: from heat engines to dissipative structures. Wiley, New York (1998)MATH Kondepudi, D., Prigogine, I.: Modern thermodynamics: from heat engines to dissipative structures. Wiley, New York (1998)MATH
22.
go back to reference Lawton, J.H.: What do species do in ecosystems? Oikos 71(3), 367–374 (1994)CrossRef Lawton, J.H.: What do species do in ecosystems? Oikos 71(3), 367–374 (1994)CrossRef
23.
26.
go back to reference Lorenz, R.: Computational mathematics: full steam ahead-probably. Science 299(5608), 837–838 (2003)CrossRef Lorenz, R.: Computational mathematics: full steam ahead-probably. Science 299(5608), 837–838 (2003)CrossRef
27.
go back to reference Lorenz, R.D., Lunine, J.I., Withers, P.G.: Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28(3), 415–418 (2001)CrossRef Lorenz, R.D., Lunine, J.I., Withers, P.G.: Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28(3), 415–418 (2001)CrossRef
31.
go back to reference Mazancourt, D.C., Loreau, M.: Grazing optimization, nutrient cycling, and spatial heterogeneity of plant-herbivore interactions: should a palatable plant evolve? Evolution 54(1), 81–92 (2000) Mazancourt, D.C., Loreau, M.: Grazing optimization, nutrient cycling, and spatial heterogeneity of plant-herbivore interactions: should a palatable plant evolve? Evolution 54(1), 81–92 (2000)
34.
go back to reference Morrison, P.: A thermodynamic characterization of self-reproduction. Rev. Mod. Phys. 36(2), 517 (1964)CrossRef Morrison, P.: A thermodynamic characterization of self-reproduction. Rev. Mod. Phys. 36(2), 517 (1964)CrossRef
35.
go back to reference Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Physical review E (Statistical, Nonlinear, and Soft Matter Physics) 80(2), 021113–021115. (2009) doi:10.1103/PhysRevE.80.021113 Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Physical review E (Statistical, Nonlinear, and Soft Matter Physics) 80(2), 021113–021115. (2009) doi:10.​1103/​PhysRevE.​80.​021113
36.
go back to reference Paltridge, G.W.: Global dynamics and climate-a system of minimum entropy exchange. Q. J. Roy. Met. Soc. 104, 927–945 (1975)CrossRef Paltridge, G.W.: Global dynamics and climate-a system of minimum entropy exchange. Q. J. Roy. Met. Soc. 104, 927–945 (1975)CrossRef
37.
go back to reference Pfeiffer, T., Bonhoeffer, S.: Evolution of cross-feeding in microbial populations. Am. Nat. 163(6), E126–E135 (2004)CrossRef Pfeiffer, T., Bonhoeffer, S.: Evolution of cross-feeding in microbial populations. Am. Nat. 163(6), E126–E135 (2004)CrossRef
38.
go back to reference Pianka, E.R.: R-selection and K-selection. Am. Nat. 104(940), 592–597 (1970)CrossRef Pianka, E.R.: R-selection and K-selection. Am. Nat. 104(940), 592–597 (1970)CrossRef
39.
go back to reference Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Optim. Online 5, 1–39 (2010) Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Optim. Online 5, 1–39 (2010)
40.
go back to reference Rosenzweig, R.F., Sharp, R.R., Treves, D.S., Adams, J.: Microbial evolution in a simple unstructured environment: genetic differentiation in escherichia coli. Genetics 137(4), 903–917 (1994) Rosenzweig, R.F., Sharp, R.R., Treves, D.S., Adams, J.: Microbial evolution in a simple unstructured environment: genetic differentiation in escherichia coli. Genetics 137(4), 903–917 (1994)
42.
43.
go back to reference Vallino, J.J.: Modeling microbial consortiums as distributed metabolic networks. Biol. Bull. 204(2), 174–179 (2003)CrossRef Vallino, J.J.: Modeling microbial consortiums as distributed metabolic networks. Biol. Bull. 204(2), 174–179 (2003)CrossRef
44.
go back to reference Vallino, J.J.: Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Philos. Trans. Royal Soc. B: Biol. Sci. 365(1545), 1417–1427 (2010). doi:10.1098/rstb.2009.0272 CrossRef Vallino, J.J.: Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Philos. Trans. Royal Soc. B: Biol. Sci. 365(1545), 1417–1427 (2010). doi:10.​1098/​rstb.​2009.​0272 CrossRef
45.
46.
go back to reference Wang, J., Bras, R.L.: A model of evapotranspiration based on the theory of maximum entropy production. Water Resour. Res. 47(3 (W03521)), 1–10 (2011) doi:10.1029/2010WR009392 Wang, J., Bras, R.L.: A model of evapotranspiration based on the theory of maximum entropy production. Water Resour. Res. 47(3 (W03521)), 1–10 (2011) doi:10.​1029/​2010WR009392
Metadata
Title
Use of Receding Horizon Optimal Control to Solve MaxEP-Based Biogeochemistry Problems
Authors
Joseph J. Vallino
Christopher K. Algar
Nuria Fernández González
Julie A. Huber
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40154-1_18