Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Vanadium Dioxide for Li- and Na-Ion Storage

Author : Dr. Dongliang Chao

Published in: Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the exhausting of traditional non-renewable fossil resources, marvelous demand of energy by industrial development and serious environment pollution problems, finding sustainable and clean energy sources has becoming the hot research topic worldwide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design (Energy & Environmental Science, Fabrication and Applications, 2014) X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design (Energy & Environmental Science, Fabrication and Applications, 2014)
2.
go back to reference X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7(6), 1850–1865 (2014)CrossRef X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7(6), 1850–1865 (2014)CrossRef
3.
go back to reference G. Gershinsky, E. Bar, L. Monconduit, D. Zitoun, Operando electron magnetic measurements of Li-ion batteries. Energy Environ. Sci. 7(6), 2012–2016 (2014) G. Gershinsky, E. Bar, L. Monconduit, D. Zitoun, Operando electron magnetic measurements of Li-ion batteries. Energy Environ. Sci. 7(6), 2012–2016 (2014)
4.
go back to reference J. Xie, C.X. Guo, C. Li, Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 7(8), 2559–2579 (2014) J. Xie, C.X. Guo, C. Li, Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 7(8), 2559–2579 (2014)
5.
go back to reference M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRef M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRef
6.
go back to reference N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. 51, 9994–10024 (2012)CrossRef N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. 51, 9994–10024 (2012)CrossRef
7.
go back to reference J.B. Goodenough, K.-S. Park, The Li-Ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRef J.B. Goodenough, K.-S. Park, The Li-Ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRef
8.
go back to reference S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)CrossRef S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)CrossRef
9.
go back to reference R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011)CrossRef R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011)CrossRef
10.
go back to reference N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-Type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)CrossRef N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-Type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)CrossRef
11.
go back to reference L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013)CrossRef L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013)CrossRef
12.
go back to reference S. Li, Y. Dong, L. Xu, X. Xu, L. He, L. Mai, Effect of carbon matrix dimensions on the electrochemical properties of Na3 V2 (PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014)CrossRef S. Li, Y. Dong, L. Xu, X. Xu, L. He, L. Mai, Effect of carbon matrix dimensions on the electrochemical properties of Na3 V2 (PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014)CrossRef
13.
go back to reference C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J. Am. Chem. Soc. 135, 11425–11428 (2013)CrossRef C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J. Am. Chem. Soc. 135, 11425–11428 (2013)CrossRef
14.
go back to reference J. Liu, H. Xia, D. Xue, L. Lu, Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 131, 12086–12087 (2009)CrossRef J. Liu, H. Xia, D. Xue, L. Lu, Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 131, 12086–12087 (2009)CrossRef
15.
go back to reference M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135, 18176–18182 (2013)CrossRef M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135, 18176–18182 (2013)CrossRef
16.
go back to reference S. Yang, Y. Gong, Z. Liu, L. Zhan, D.P. Hashim, L. Ma, R. Vajtai, P.M. Ajayan, Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013)CrossRef S. Yang, Y. Gong, Z. Liu, L. Zhan, D.P. Hashim, L. Ma, R. Vajtai, P.M. Ajayan, Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013)CrossRef
17.
go back to reference D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef
18.
go back to reference C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873–2878 (2014)CrossRef C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873–2878 (2014)CrossRef
19.
go back to reference C. Tsang, A. Manthiram, Synthesis of nanocrystafline V02 and its electrochemical. J. Electrochem. Soc. 144, 520–524 (1997)CrossRef C. Tsang, A. Manthiram, Synthesis of nanocrystafline V02 and its electrochemical. J. Electrochem. Soc. 144, 520–524 (1997)CrossRef
20.
go back to reference L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4, 33332–33337 (2014)CrossRef L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4, 33332–33337 (2014)CrossRef
21.
go back to reference L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Nanoscroll buffered hybrid nanostructural VO (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969–2973 (2013)CrossRef L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Nanoscroll buffered hybrid nanostructural VO (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969–2973 (2013)CrossRef
22.
go back to reference E. Uchaker, M. Gu, N. Zhou, Y. Li, C. Wang, G. Cao, Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals. Small 9, 3880–3886 (2013)CrossRef E. Uchaker, M. Gu, N. Zhou, Y. Li, C. Wang, G. Cao, Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals. Small 9, 3880–3886 (2013)CrossRef
23.
go back to reference S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X.B. Zuo, M. Balasubramanian, V.B. Prakapenka, C.S. Johnson, T. Rajh, Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530–538 (2012)CrossRef S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X.B. Zuo, M. Balasubramanian, V.B. Prakapenka, C.S. Johnson, T. Rajh, Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530–538 (2012)CrossRef
24.
go back to reference D.W. Su, G.X. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218–11226 (2013)CrossRef D.W. Su, G.X. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218–11226 (2013)CrossRef
25.
go back to reference S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011)CrossRef S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011)CrossRef
26.
go back to reference R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2001)CrossRef R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2001)CrossRef
27.
go back to reference Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)CrossRef Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)CrossRef
28.
go back to reference S. Yuan, X.L. Huang, D.L. Ma, H.G. Wang, F.Z. Meng, X.B. Zhang, Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273–2279 (2014)CrossRef S. Yuan, X.L. Huang, D.L. Ma, H.G. Wang, F.Z. Meng, X.B. Zhang, Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273–2279 (2014)CrossRef
29.
go back to reference C. Nethravathi, B. Viswanath, J. Michael, M. Rajamath, Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon 50, 4839–4846 (2012)CrossRef C. Nethravathi, B. Viswanath, J. Michael, M. Rajamath, Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon 50, 4839–4846 (2012)CrossRef
30.
go back to reference C. Yan, Z. Chen, Y. Peng, L. Guo, Y. Lu, Stable lithium-ion cathodes from nanocomposites of VO2 nanowires and CNTs. Nanotechnology 23, 475701 (2012)CrossRef C. Yan, Z. Chen, Y. Peng, L. Guo, Y. Lu, Stable lithium-ion cathodes from nanocomposites of VO2 nanowires and CNTs. Nanotechnology 23, 475701 (2012)CrossRef
31.
go back to reference Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869–8890 (2012)CrossRef Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869–8890 (2012)CrossRef
32.
go back to reference D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–571 (2012)CrossRef D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–571 (2012)CrossRef
33.
go back to reference J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013)CrossRef J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013)CrossRef
34.
go back to reference P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, J. Jie, Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 118, 5164–5171 (2014)CrossRef P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, J. Jie, Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 118, 5164–5171 (2014)CrossRef
35.
go back to reference J. Tian, H. Zhao, X. Quan, Y. Zhang, H. Yu, S. Chen, Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sens. Actuators B: Chem. 196, 532–538 (2014)CrossRef J. Tian, H. Zhao, X. Quan, Y. Zhang, H. Yu, S. Chen, Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sens. Actuators B: Chem. 196, 532–538 (2014)CrossRef
36.
go back to reference X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 6, 2603–2607 (2014)CrossRef X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 6, 2603–2607 (2014)CrossRef
37.
go back to reference A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef
38.
go back to reference X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H.J. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design. Fabrication and full supercapacitor demonstrations, Nano Lett. 14(3), 1651–1658 (2014) X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H.J. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design. Fabrication and full supercapacitor demonstrations, Nano Lett. 14(3), 1651–1658 (2014)
39.
go back to reference D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/Conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://doi.org/10.1002/adma.201400719CrossRef D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/Conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://​doi.​org/​10.​1002/​adma.​201400719CrossRef
40.
go back to reference V.M. Yuwono, N.D. Burrows, J.A. Soltis, R.L. Penn, Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010)CrossRef V.M. Yuwono, N.D. Burrows, J.A. Soltis, R.L. Penn, Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010)CrossRef
41.
go back to reference H. Wang, H. Yi, X. Chen, X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J. Mater. Chem. A 2, 1165–1173 (2014)CrossRef H. Wang, H. Yi, X. Chen, X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J. Mater. Chem. A 2, 1165–1173 (2014)CrossRef
42.
go back to reference Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef
43.
go back to reference K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)CrossRef K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)CrossRef
44.
go back to reference A. Ananthanarayanan, X.W. Wang, P. Routh, B. Sana, S. Lim, D.H. Kim, K.H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef A. Ananthanarayanan, X.W. Wang, P. Routh, B. Sana, S. Lim, D.H. Kim, K.H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef
45.
go back to reference J. Liu, Q. Li, T. Wang, D. Yu, Y. Li, Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. 43, 5048–5052 (2004)CrossRef J. Liu, Q. Li, T. Wang, D. Yu, Y. Li, Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. 43, 5048–5052 (2004)CrossRef
46.
go back to reference H. Liu, Y. Wang, K. Wang, E. Hosono, H. Zhou, Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. J. Mater. Chem. 19, 2835–2840 (2009)CrossRef H. Liu, Y. Wang, K. Wang, E. Hosono, H. Zhou, Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. J. Mater. Chem. 19, 2835–2840 (2009)CrossRef
47.
go back to reference X. Rui, D. Sim, C. Xu, W. Liu, H. Tan, K. Wong, H.H. Hng, T.M. Lim, Q. Yan, One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage. RSC Advances 2, 1174–1180 (2012)CrossRef X. Rui, D. Sim, C. Xu, W. Liu, H. Tan, K. Wong, H.H. Hng, T.M. Lim, Q. Yan, One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage. RSC Advances 2, 1174–1180 (2012)CrossRef
48.
go back to reference Q. Zhao, L. Jiao, W. Peng, H. Gao, J. Yang, Q. Wang, H. Du, L. Li, Z. Qi, Y. Si, Y. Wang, H. Yuan, Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J. Power Sources 199, 350–354 (2012)CrossRef Q. Zhao, L. Jiao, W. Peng, H. Gao, J. Yang, Q. Wang, H. Du, L. Li, Z. Qi, Y. Si, Y. Wang, H. Yuan, Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J. Power Sources 199, 350–354 (2012)CrossRef
49.
go back to reference C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, Y. Bando, N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interfaces. 5, 2708–2714 (2013)CrossRef C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, Y. Bando, N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interfaces. 5, 2708–2714 (2013)CrossRef
50.
go back to reference Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)CrossRef Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)CrossRef
51.
go back to reference D.Y. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013)CrossRef D.Y. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013)CrossRef
52.
go back to reference Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)CrossRef Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)CrossRef
53.
go back to reference A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012)CrossRef A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012)CrossRef
54.
go back to reference H. Kim, R.H. Kim, S.S. Lee, Y. Kim, D.Y. Kim, K. Park, Effects of ni doping on the initial electrochemical performance of vanadium oxide nanotubes for na-ion batteries. ACS Appl. Mater. Interfaces. 6, 11692–11697 (2014)CrossRef H. Kim, R.H. Kim, S.S. Lee, Y. Kim, D.Y. Kim, K. Park, Effects of ni doping on the initial electrochemical performance of vanadium oxide nanotubes for na-ion batteries. ACS Appl. Mater. Interfaces. 6, 11692–11697 (2014)CrossRef
55.
go back to reference D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef
56.
go back to reference A.M. Kannan, A. Manthiram, Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes. Solid State Ionics 159, 265–271 (2003)CrossRef A.M. Kannan, A. Manthiram, Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes. Solid State Ionics 159, 265–271 (2003)CrossRef
57.
go back to reference W. Chen, J. Peng, L. Mai, H. Yu, Y. Qi, Fabrication of novel vanadium dioxide nanorods as cathode material for rechargeable lithium batteries. Chem. Lett. 33, 1366–1367 (2004)CrossRef W. Chen, J. Peng, L. Mai, H. Yu, Y. Qi, Fabrication of novel vanadium dioxide nanorods as cathode material for rechargeable lithium batteries. Chem. Lett. 33, 1366–1367 (2004)CrossRef
58.
go back to reference F. Wang, Y. Liu, C.-Y. Liu, Hydrothermal synthesis of carbon/vanadium dioxide core–shell microspheres with good cycling performance in both organic and aqueous electrolytes. Electrochem. Acta 55, 2662–2666 (2010)CrossRef F. Wang, Y. Liu, C.-Y. Liu, Hydrothermal synthesis of carbon/vanadium dioxide core–shell microspheres with good cycling performance in both organic and aqueous electrolytes. Electrochem. Acta 55, 2662–2666 (2010)CrossRef
59.
go back to reference N. Ganganagappa, A. Siddaramanna, One step synthesis of monoclinic VO2 (B) bundles of nanorods: cathode for Li ion battery. Mater. Charact. 68, 58–62 (2012)CrossRef N. Ganganagappa, A. Siddaramanna, One step synthesis of monoclinic VO2 (B) bundles of nanorods: cathode for Li ion battery. Mater. Charact. 68, 58–62 (2012)CrossRef
60.
go back to reference P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada, A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 4194–4197 (2013) P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada, A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 4194–4197 (2013)
61.
go back to reference D. Yuan, W. He, F. Pei, F. Wu, Y. Wu, J. Qian, Y. Cao, X. Ai, H. Yang, Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 3895–3899 (2013) D. Yuan, W. He, F. Pei, F. Wu, Y. Wu, J. Qian, Y. Cao, X. Ai, H. Yang, Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 3895–3899 (2013)
Metadata
Title
Vanadium Dioxide for Li- and Na-Ion Storage
Author
Dr. Dongliang Chao
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3080-3_3