Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Vanadium Dioxide for Li- and Na-Ion Storage

verfasst von : Dr. Dongliang Chao

Erschienen in: Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the exhausting of traditional non-renewable fossil resources, marvelous demand of energy by industrial development and serious environment pollution problems, finding sustainable and clean energy sources has becoming the hot research topic worldwide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design (Energy & Environmental Science, Fabrication and Applications, 2014) X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design (Energy & Environmental Science, Fabrication and Applications, 2014)
2.
Zurück zum Zitat X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7(6), 1850–1865 (2014)CrossRef X. Cao, Z. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7(6), 1850–1865 (2014)CrossRef
3.
Zurück zum Zitat G. Gershinsky, E. Bar, L. Monconduit, D. Zitoun, Operando electron magnetic measurements of Li-ion batteries. Energy Environ. Sci. 7(6), 2012–2016 (2014) G. Gershinsky, E. Bar, L. Monconduit, D. Zitoun, Operando electron magnetic measurements of Li-ion batteries. Energy Environ. Sci. 7(6), 2012–2016 (2014)
4.
Zurück zum Zitat J. Xie, C.X. Guo, C. Li, Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 7(8), 2559–2579 (2014) J. Xie, C.X. Guo, C. Li, Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 7(8), 2559–2579 (2014)
5.
Zurück zum Zitat M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRef M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRef
6.
Zurück zum Zitat N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. 51, 9994–10024 (2012)CrossRef N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. 51, 9994–10024 (2012)CrossRef
7.
Zurück zum Zitat J.B. Goodenough, K.-S. Park, The Li-Ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRef J.B. Goodenough, K.-S. Park, The Li-Ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRef
8.
Zurück zum Zitat S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)CrossRef S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)CrossRef
9.
Zurück zum Zitat R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011)CrossRef R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011)CrossRef
10.
Zurück zum Zitat N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-Type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)CrossRef N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-Type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)CrossRef
11.
Zurück zum Zitat L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013)CrossRef L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013)CrossRef
12.
Zurück zum Zitat S. Li, Y. Dong, L. Xu, X. Xu, L. He, L. Mai, Effect of carbon matrix dimensions on the electrochemical properties of Na3 V2 (PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014)CrossRef S. Li, Y. Dong, L. Xu, X. Xu, L. He, L. Mai, Effect of carbon matrix dimensions on the electrochemical properties of Na3 V2 (PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014)CrossRef
13.
Zurück zum Zitat C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J. Am. Chem. Soc. 135, 11425–11428 (2013)CrossRef C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J. Am. Chem. Soc. 135, 11425–11428 (2013)CrossRef
14.
Zurück zum Zitat J. Liu, H. Xia, D. Xue, L. Lu, Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 131, 12086–12087 (2009)CrossRef J. Liu, H. Xia, D. Xue, L. Lu, Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 131, 12086–12087 (2009)CrossRef
15.
Zurück zum Zitat M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135, 18176–18182 (2013)CrossRef M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135, 18176–18182 (2013)CrossRef
16.
Zurück zum Zitat S. Yang, Y. Gong, Z. Liu, L. Zhan, D.P. Hashim, L. Ma, R. Vajtai, P.M. Ajayan, Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013)CrossRef S. Yang, Y. Gong, Z. Liu, L. Zhan, D.P. Hashim, L. Ma, R. Vajtai, P.M. Ajayan, Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013)CrossRef
17.
Zurück zum Zitat D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef
18.
Zurück zum Zitat C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873–2878 (2014)CrossRef C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873–2878 (2014)CrossRef
19.
Zurück zum Zitat C. Tsang, A. Manthiram, Synthesis of nanocrystafline V02 and its electrochemical. J. Electrochem. Soc. 144, 520–524 (1997)CrossRef C. Tsang, A. Manthiram, Synthesis of nanocrystafline V02 and its electrochemical. J. Electrochem. Soc. 144, 520–524 (1997)CrossRef
20.
Zurück zum Zitat L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4, 33332–33337 (2014)CrossRef L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4, 33332–33337 (2014)CrossRef
21.
Zurück zum Zitat L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Nanoscroll buffered hybrid nanostructural VO (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969–2973 (2013)CrossRef L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Nanoscroll buffered hybrid nanostructural VO (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969–2973 (2013)CrossRef
22.
Zurück zum Zitat E. Uchaker, M. Gu, N. Zhou, Y. Li, C. Wang, G. Cao, Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals. Small 9, 3880–3886 (2013)CrossRef E. Uchaker, M. Gu, N. Zhou, Y. Li, C. Wang, G. Cao, Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals. Small 9, 3880–3886 (2013)CrossRef
23.
Zurück zum Zitat S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X.B. Zuo, M. Balasubramanian, V.B. Prakapenka, C.S. Johnson, T. Rajh, Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530–538 (2012)CrossRef S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X.B. Zuo, M. Balasubramanian, V.B. Prakapenka, C.S. Johnson, T. Rajh, Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530–538 (2012)CrossRef
24.
Zurück zum Zitat D.W. Su, G.X. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218–11226 (2013)CrossRef D.W. Su, G.X. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218–11226 (2013)CrossRef
25.
Zurück zum Zitat S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011)CrossRef S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011)CrossRef
26.
Zurück zum Zitat R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2001)CrossRef R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2001)CrossRef
27.
Zurück zum Zitat Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)CrossRef Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)CrossRef
28.
Zurück zum Zitat S. Yuan, X.L. Huang, D.L. Ma, H.G. Wang, F.Z. Meng, X.B. Zhang, Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273–2279 (2014)CrossRef S. Yuan, X.L. Huang, D.L. Ma, H.G. Wang, F.Z. Meng, X.B. Zhang, Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273–2279 (2014)CrossRef
29.
Zurück zum Zitat C. Nethravathi, B. Viswanath, J. Michael, M. Rajamath, Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon 50, 4839–4846 (2012)CrossRef C. Nethravathi, B. Viswanath, J. Michael, M. Rajamath, Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon 50, 4839–4846 (2012)CrossRef
30.
Zurück zum Zitat C. Yan, Z. Chen, Y. Peng, L. Guo, Y. Lu, Stable lithium-ion cathodes from nanocomposites of VO2 nanowires and CNTs. Nanotechnology 23, 475701 (2012)CrossRef C. Yan, Z. Chen, Y. Peng, L. Guo, Y. Lu, Stable lithium-ion cathodes from nanocomposites of VO2 nanowires and CNTs. Nanotechnology 23, 475701 (2012)CrossRef
31.
Zurück zum Zitat Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869–8890 (2012)CrossRef Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869–8890 (2012)CrossRef
32.
Zurück zum Zitat D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–571 (2012)CrossRef D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–571 (2012)CrossRef
33.
Zurück zum Zitat J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013)CrossRef J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013)CrossRef
34.
Zurück zum Zitat P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, J. Jie, Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 118, 5164–5171 (2014)CrossRef P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, J. Jie, Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 118, 5164–5171 (2014)CrossRef
35.
Zurück zum Zitat J. Tian, H. Zhao, X. Quan, Y. Zhang, H. Yu, S. Chen, Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sens. Actuators B: Chem. 196, 532–538 (2014)CrossRef J. Tian, H. Zhao, X. Quan, Y. Zhang, H. Yu, S. Chen, Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sens. Actuators B: Chem. 196, 532–538 (2014)CrossRef
36.
Zurück zum Zitat X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 6, 2603–2607 (2014)CrossRef X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 6, 2603–2607 (2014)CrossRef
37.
Zurück zum Zitat A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef
38.
Zurück zum Zitat X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H.J. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design. Fabrication and full supercapacitor demonstrations, Nano Lett. 14(3), 1651–1658 (2014) X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H.J. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design. Fabrication and full supercapacitor demonstrations, Nano Lett. 14(3), 1651–1658 (2014)
39.
Zurück zum Zitat D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/Conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://doi.org/10.1002/adma.201400719CrossRef D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/Conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://​doi.​org/​10.​1002/​adma.​201400719CrossRef
40.
Zurück zum Zitat V.M. Yuwono, N.D. Burrows, J.A. Soltis, R.L. Penn, Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010)CrossRef V.M. Yuwono, N.D. Burrows, J.A. Soltis, R.L. Penn, Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010)CrossRef
41.
Zurück zum Zitat H. Wang, H. Yi, X. Chen, X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J. Mater. Chem. A 2, 1165–1173 (2014)CrossRef H. Wang, H. Yi, X. Chen, X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J. Mater. Chem. A 2, 1165–1173 (2014)CrossRef
42.
Zurück zum Zitat Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef
43.
Zurück zum Zitat K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)CrossRef K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)CrossRef
44.
Zurück zum Zitat A. Ananthanarayanan, X.W. Wang, P. Routh, B. Sana, S. Lim, D.H. Kim, K.H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef A. Ananthanarayanan, X.W. Wang, P. Routh, B. Sana, S. Lim, D.H. Kim, K.H. Lim, J. Li, P. Chen, Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 + sensing. Adv. Funct. Mater. 24, 3021–3026 (2014)CrossRef
45.
Zurück zum Zitat J. Liu, Q. Li, T. Wang, D. Yu, Y. Li, Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. 43, 5048–5052 (2004)CrossRef J. Liu, Q. Li, T. Wang, D. Yu, Y. Li, Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. 43, 5048–5052 (2004)CrossRef
46.
Zurück zum Zitat H. Liu, Y. Wang, K. Wang, E. Hosono, H. Zhou, Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. J. Mater. Chem. 19, 2835–2840 (2009)CrossRef H. Liu, Y. Wang, K. Wang, E. Hosono, H. Zhou, Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. J. Mater. Chem. 19, 2835–2840 (2009)CrossRef
47.
Zurück zum Zitat X. Rui, D. Sim, C. Xu, W. Liu, H. Tan, K. Wong, H.H. Hng, T.M. Lim, Q. Yan, One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage. RSC Advances 2, 1174–1180 (2012)CrossRef X. Rui, D. Sim, C. Xu, W. Liu, H. Tan, K. Wong, H.H. Hng, T.M. Lim, Q. Yan, One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage. RSC Advances 2, 1174–1180 (2012)CrossRef
48.
Zurück zum Zitat Q. Zhao, L. Jiao, W. Peng, H. Gao, J. Yang, Q. Wang, H. Du, L. Li, Z. Qi, Y. Si, Y. Wang, H. Yuan, Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J. Power Sources 199, 350–354 (2012)CrossRef Q. Zhao, L. Jiao, W. Peng, H. Gao, J. Yang, Q. Wang, H. Du, L. Li, Z. Qi, Y. Si, Y. Wang, H. Yuan, Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J. Power Sources 199, 350–354 (2012)CrossRef
49.
Zurück zum Zitat C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, Y. Bando, N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interfaces. 5, 2708–2714 (2013)CrossRef C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, Y. Bando, N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interfaces. 5, 2708–2714 (2013)CrossRef
50.
Zurück zum Zitat Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)CrossRef Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)CrossRef
51.
Zurück zum Zitat D.Y. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013)CrossRef D.Y. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013)CrossRef
52.
Zurück zum Zitat Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)CrossRef Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)CrossRef
53.
Zurück zum Zitat A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012)CrossRef A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012)CrossRef
54.
Zurück zum Zitat H. Kim, R.H. Kim, S.S. Lee, Y. Kim, D.Y. Kim, K. Park, Effects of ni doping on the initial electrochemical performance of vanadium oxide nanotubes for na-ion batteries. ACS Appl. Mater. Interfaces. 6, 11692–11697 (2014)CrossRef H. Kim, R.H. Kim, S.S. Lee, Y. Kim, D.Y. Kim, K. Park, Effects of ni doping on the initial electrochemical performance of vanadium oxide nanotubes for na-ion batteries. ACS Appl. Mater. Interfaces. 6, 11692–11697 (2014)CrossRef
55.
Zurück zum Zitat D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef
56.
Zurück zum Zitat A.M. Kannan, A. Manthiram, Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes. Solid State Ionics 159, 265–271 (2003)CrossRef A.M. Kannan, A. Manthiram, Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes. Solid State Ionics 159, 265–271 (2003)CrossRef
57.
Zurück zum Zitat W. Chen, J. Peng, L. Mai, H. Yu, Y. Qi, Fabrication of novel vanadium dioxide nanorods as cathode material for rechargeable lithium batteries. Chem. Lett. 33, 1366–1367 (2004)CrossRef W. Chen, J. Peng, L. Mai, H. Yu, Y. Qi, Fabrication of novel vanadium dioxide nanorods as cathode material for rechargeable lithium batteries. Chem. Lett. 33, 1366–1367 (2004)CrossRef
58.
Zurück zum Zitat F. Wang, Y. Liu, C.-Y. Liu, Hydrothermal synthesis of carbon/vanadium dioxide core–shell microspheres with good cycling performance in both organic and aqueous electrolytes. Electrochem. Acta 55, 2662–2666 (2010)CrossRef F. Wang, Y. Liu, C.-Y. Liu, Hydrothermal synthesis of carbon/vanadium dioxide core–shell microspheres with good cycling performance in both organic and aqueous electrolytes. Electrochem. Acta 55, 2662–2666 (2010)CrossRef
59.
Zurück zum Zitat N. Ganganagappa, A. Siddaramanna, One step synthesis of monoclinic VO2 (B) bundles of nanorods: cathode for Li ion battery. Mater. Charact. 68, 58–62 (2012)CrossRef N. Ganganagappa, A. Siddaramanna, One step synthesis of monoclinic VO2 (B) bundles of nanorods: cathode for Li ion battery. Mater. Charact. 68, 58–62 (2012)CrossRef
60.
Zurück zum Zitat P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada, A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 4194–4197 (2013) P. Barpanda, T. Ye, M. Avdeev, S.C. Chung, A. Yamada, A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 4194–4197 (2013)
61.
Zurück zum Zitat D. Yuan, W. He, F. Pei, F. Wu, Y. Wu, J. Qian, Y. Cao, X. Ai, H. Yang, Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 3895–3899 (2013) D. Yuan, W. He, F. Pei, F. Wu, Y. Wu, J. Qian, Y. Cao, X. Ai, H. Yang, Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A. 1, 3895–3899 (2013)
Metadaten
Titel
Vanadium Dioxide for Li- and Na-Ion Storage
verfasst von
Dr. Dongliang Chao
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3080-3_3