Skip to main content
Top

2013 | OriginalPaper | Chapter

13. Water Nanodroplets: Molecular Drag and Self-assembly

Authors : J. Russell, B. Wang, N. Patra, P. Král

Published in: Nanodroplets

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Directed transport and self-assembly of nanomaterials can potentially be facilitated by water nanodroplets, which could carry reactants or serve as a selective catalyst. We show by molecular dynamics simulations that water nanodroplets can be transported along and around the surfaces of vibrated carbon nanotubes. We show a second transport method where ions intercalated in carbon and boron-nitride nanotubes can be solvated at distance in polarizable nanodroplets adsorbed on their surfaces. When the ions are driven in the nanotubes by electric fields, the adsorbed droplets are dragged together with them. Finally, we demonstrate that water nanodroplets can activate and guide the folding of planar graphene nanostructures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the MD simulations, we apply the Langevin dynamics with 0.01 ps−1 damping coefficient, to minimize the unphysical loss of momentum [16], and the time step is 1 fs. The systems are simulated as NVT ensembles inside periodic cells of the following sizes: Fig. 13.9 (55 × 35 × 35 nm3), Fig. 13.10 (up) (30 × 35 × 35 nm3), Fig. 13.10 (bottom) (30 × 35 × 35 nm3), Fig. 13.11 (15 × 85 × 25 nm3), Fig. 13.12 (20 × 120 × 20 nm3), and Fig. 13.14 (20 × 75 × 20 nm3). The graphene–water (or graphene–graphene) binding energies are calculated as the difference of the total vdW energy of the system, when the system components are at the normal binding distance, and when they are separated by 5 nm. Averaging of the energies is done over 100 consecutive frames of the simulation trajectory, with a 1 ps time interval.
 
Literature
1.
go back to reference Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
2.
go back to reference Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. World Scientific, London (1998)CrossRef Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. World Scientific, London (1998)CrossRef
3.
go back to reference Král, P., Tománek, D.: Laser-driven atomic pump. Phys. Rev. Lett. 83, 5373–5376 (1999)CrossRef Král, P., Tománek, D.: Laser-driven atomic pump. Phys. Rev. Lett. 83, 5373–5376 (1999)CrossRef
4.
go back to reference Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)CrossRef Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)CrossRef
5.
go back to reference Svensson, K., Olin, H., Olsson, E.: Nanopipettes for metal transport. Phys. Rev. Lett. 93, 145901 (2004)CrossRef Svensson, K., Olin, H., Olsson, E.: Nanopipettes for metal transport. Phys. Rev. Lett. 93, 145901 (2004)CrossRef
6.
go back to reference Wang, B., Král, P.: Coulombic dragging of molecules on surfaces induced by separately flowing liquids. J. Am. Chem. Soc. 128, 15984 (2006)CrossRef Wang, B., Král, P.: Coulombic dragging of molecules on surfaces induced by separately flowing liquids. J. Am. Chem. Soc. 128, 15984 (2006)CrossRef
7.
go back to reference Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef
8.
go back to reference Zhao, Y.C., Song, L., Deng, K., Liu, Z., Zhang, Z.X., Yang, Y.L., Wang, C., Yang, H.F., Jin, A.Z., Luo, Q., Gu, C.Z., Xie, S.S., Sun, L.F.: Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20, 1772–1776 (2008)CrossRef Zhao, Y.C., Song, L., Deng, K., Liu, Z., Zhang, Z.X., Yang, Y.L., Wang, C., Yang, H.F., Jin, A.Z., Luo, Q., Gu, C.Z., Xie, S.S., Sun, L.F.: Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20, 1772–1776 (2008)CrossRef
9.
go back to reference Schoen, P.A.E., Walther, J.H., Arcidiacono, S., Poulikakos, D., Koumoutsakos, P.: Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes. Nano Lett. 6, 1910–1917 (2006)CrossRef Schoen, P.A.E., Walther, J.H., Arcidiacono, S., Poulikakos, D., Koumoutsakos, P.: Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes. Nano Lett. 6, 1910–1917 (2006)CrossRef
10.
go back to reference Barreiro, A., Rurali, R., Hernandez, E.R., Moser, J., Pichler, T., Forro, L., Bachtold, A.: Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science 320, 775–778 (2008)CrossRef Barreiro, A., Rurali, R., Hernandez, E.R., Moser, J., Pichler, T., Forro, L., Bachtold, A.: Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science 320, 775–778 (2008)CrossRef
11.
go back to reference Zambrano, H.A., Walther, J.H., Koumoutsakos, P., Sbalzarini, I.F.: Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett. 9, 66–71 (2006)CrossRef Zambrano, H.A., Walther, J.H., Koumoutsakos, P., Sbalzarini, I.F.: Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett. 9, 66–71 (2006)CrossRef
12.
go back to reference Shiomi, J., Maruyama, S.: Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20, 055708 (2009)CrossRef Shiomi, J., Maruyama, S.: Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20, 055708 (2009)CrossRef
13.
go back to reference Insepov, Z., Wolf, D., Hassanein, A.: Nanopumping using carbon nanotubes. Nano Lett. 6, 1893–1895 (2006)CrossRef Insepov, Z., Wolf, D., Hassanein, A.: Nanopumping using carbon nanotubes. Nano Lett. 6, 1893–1895 (2006)CrossRef
14.
go back to reference Wang, Q.: Atomic transportation via carbon nanotubes. Nano Lett. 9, 245–249 (2009)CrossRef Wang, Q.: Atomic transportation via carbon nanotubes. Nano Lett. 9, 245–249 (2009)CrossRef
15.
go back to reference Russell, J.T., Wang, B., Král, P.: Nanodroplet transport on vibrated nanotubes. Phys. Chem. Lett. 3, 313–357 (2012) Russell, J.T., Wang, B., Král, P.: Nanodroplet transport on vibrated nanotubes. Phys. Chem. Lett. 3, 313–357 (2012)
16.
go back to reference Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef
17.
go back to reference Patra, N., Wang, B., Král, P.: Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009)CrossRef Patra, N., Wang, B., Král, P.: Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009)CrossRef
18.
go back to reference Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRef Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRef
19.
go back to reference MacKerell, A.D. Jr., Bashford, D., Bellot, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E. III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3617 (1998)CrossRef MacKerell, A.D. Jr., Bashford, D., Bellot, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E. III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3617 (1998)CrossRef
20.
go back to reference Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef
21.
go back to reference Frisch, M.J., et al: Gaussian 03, Revision C.02. Gaussian, Wallingford (2004) Frisch, M.J., et al: Gaussian 03, Revision C.02. Gaussian, Wallingford (2004)
22.
go back to reference Vukovic, L., Král, P.: Coulombically driven rolling of nanorods on water Phys. Rev. Lett. 103, 246103 (2009)CrossRef Vukovic, L., Král, P.: Coulombically driven rolling of nanorods on water Phys. Rev. Lett. 103, 246103 (2009)CrossRef
23.
go back to reference Tersoff, J.: Energies of fullerenes. J. Phys. Rev. B 46, 15546–15549 (1992)CrossRef Tersoff, J.: Energies of fullerenes. J. Phys. Rev. B 46, 15546–15549 (1992)CrossRef
24.
go back to reference Kudin, K.N., Scuseria, E.G.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406–234515 (2001)CrossRef Kudin, K.N., Scuseria, E.G.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406–234515 (2001)CrossRef
25.
go back to reference Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69, 115415–115425 (2004)CrossRef Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69, 115415–115425 (2004)CrossRef
26.
go back to reference Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 42, 102002–102007 (2009)CrossRef Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 42, 102002–102007 (2009)CrossRef
27.
go back to reference Wang, Z., Zhe, J.: Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11, 1280–1285 (2011)CrossRef Wang, Z., Zhe, J.: Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11, 1280–1285 (2011)CrossRef
28.
go back to reference Hashimoto, H., Koike, Y., Ueha, S.: Transporting objects without contact using flexural travelling waves. J. Acoust. Soc. Am. 103, 3230–3233 (1998)CrossRef Hashimoto, H., Koike, Y., Ueha, S.: Transporting objects without contact using flexural travelling waves. J. Acoust. Soc. Am. 103, 3230–3233 (1998)CrossRef
29.
go back to reference Kim, G.H., Park, J.W., Jeong, S.H.: Analysis of dynamic characteristics for vibration of flexural beam in ultrasonic transport system. J. Mech. Sci. Technol. 23, 1428–1434 (2009)CrossRef Kim, G.H., Park, J.W., Jeong, S.H.: Analysis of dynamic characteristics for vibration of flexural beam in ultrasonic transport system. J. Mech. Sci. Technol. 23, 1428–1434 (2009)CrossRef
30.
go back to reference Miranda, E.C., Thomsen, J.J.: Vibration induced sliding: theory and experiment for a beam with a spring-loaded mass. Nonlinear Dyn. 19, 167–186 (1998)CrossRef Miranda, E.C., Thomsen, J.J.: Vibration induced sliding: theory and experiment for a beam with a spring-loaded mass. Nonlinear Dyn. 19, 167–186 (1998)CrossRef
31.
go back to reference Vielsack, P., Spiess, H.: Sliding of a mass on an inclined driven plane with randomly varying coefficient of friction. J. Appl. Mech. 67, 112–116 (2000)CrossRef Vielsack, P., Spiess, H.: Sliding of a mass on an inclined driven plane with randomly varying coefficient of friction. J. Appl. Mech. 67, 112–116 (2000)CrossRef
32.
go back to reference Long, Y.G., Nagaya, K., Niwa, H.: Vibration conveyance in spatial-curved tubes. J. Vib. Acoust. 116, 38–46 (1994)CrossRef Long, Y.G., Nagaya, K., Niwa, H.: Vibration conveyance in spatial-curved tubes. J. Vib. Acoust. 116, 38–46 (1994)CrossRef
33.
go back to reference Biwersi, S., Manceau, J.-F., Bastien, F.: Displacement of droplets and deformation of thin liquid layers using flexural vibrations of structures. influence of acoustic radiation pressure. J. Acoust. Soc. Am. 107, 661–664 (2000) Biwersi, S., Manceau, J.-F., Bastien, F.: Displacement of droplets and deformation of thin liquid layers using flexural vibrations of structures. influence of acoustic radiation pressure. J. Acoust. Soc. Am. 107, 661–664 (2000)
34.
go back to reference Wixforth, A., Strobl, C., Gauer, C., Toegl, A., Scriba, J., Guttenberg, Z.V.: Acoustic manipulation of small droplets. Anal. Bioanal. Chem. 379, 982–991 (2004)CrossRef Wixforth, A., Strobl, C., Gauer, C., Toegl, A., Scriba, J., Guttenberg, Z.V.: Acoustic manipulation of small droplets. Anal. Bioanal. Chem. 379, 982–991 (2004)CrossRef
35.
go back to reference Alzuaga, S., Manceau, J.-F., Bastien, F.: Motion of droplets on solid surface using acoustic radiation pressure. J. Sound Vib. 282, 151–162 (2005)CrossRef Alzuaga, S., Manceau, J.-F., Bastien, F.: Motion of droplets on solid surface using acoustic radiation pressure. J. Sound Vib. 282, 151–162 (2005)CrossRef
36.
go back to reference Bennes, J., Alzuaga, S., Chabe, P., Morain, G., Cheroux, F, Manceau, J.-F., Bastien, F.: Action of low frequency vibration on liquid droplets and particles. Ultrasonics 44, 497–502 (2004)CrossRef Bennes, J., Alzuaga, S., Chabe, P., Morain, G., Cheroux, F, Manceau, J.-F., Bastien, F.: Action of low frequency vibration on liquid droplets and particles. Ultrasonics 44, 497–502 (2004)CrossRef
37.
go back to reference Jiao, Z.J., Huang, X.Y., Nguyen, N.-T.: Scattering and attenuation of surface acoustic waves in droplet actuation. J. Phys. A Math. Theor. 41, 355502 (2008)CrossRef Jiao, Z.J., Huang, X.Y., Nguyen, N.-T.: Scattering and attenuation of surface acoustic waves in droplet actuation. J. Phys. A Math. Theor. 41, 355502 (2008)CrossRef
38.
go back to reference Mele, E.J., Král, P.: Electric polarization of heteropolar nanotubes as a geometric phase. Phys. Rev. Lett. 88, 056803 (2002)CrossRef Mele, E.J., Král, P.: Electric polarization of heteropolar nanotubes as a geometric phase. Phys. Rev. Lett. 88, 056803 (2002)CrossRef
39.
go back to reference Michalski, P.J., Sai, N.A., Mele, E.J.: Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95, 116803 (2005)CrossRef Michalski, P.J., Sai, N.A., Mele, E.J.: Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95, 116803 (2005)CrossRef
40.
go back to reference Král, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)CrossRef Král, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)CrossRef
41.
go back to reference Schneider, T., Stoll, E.: Molecular-dynamics study of three-dimensions one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)CrossRef Schneider, T., Stoll, E.: Molecular-dynamics study of three-dimensions one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)CrossRef
42.
go back to reference Matsumoto, M., Kunisawa, T., Xiao, P.: Relaxation of phonons in classical MD simulation. J. Therm. Sci. Technol. 3, 159–166 (2008)CrossRef Matsumoto, M., Kunisawa, T., Xiao, P.: Relaxation of phonons in classical MD simulation. J. Therm. Sci. Technol. 3, 159–166 (2008)CrossRef
43.
go back to reference Král, P.: Linearized quantum transport equations: AC conductance of a quantum wire with an electron-phonon interaction. Phys. Rev. B 53, 11034–11050 (1996)CrossRef Král, P.: Linearized quantum transport equations: AC conductance of a quantum wire with an electron-phonon interaction. Phys. Rev. B 53, 11034–11050 (1996)CrossRef
44.
go back to reference Benumof, R.: Momentum propagation by traveling waves on a string. Am. J. Phys. 50, 20–25 (1982)CrossRef Benumof, R.: Momentum propagation by traveling waves on a string. Am. J. Phys. 50, 20–25 (1982)CrossRef
45.
go back to reference Segal, D., Král, P., Shapiro, M.: Ultraslow phonon-assisted collapse of tubular image states. Surf. Sci. 577, 86–92 (2005)CrossRef Segal, D., Král, P., Shapiro, M.: Ultraslow phonon-assisted collapse of tubular image states. Surf. Sci. 577, 86–92 (2005)CrossRef
46.
go back to reference Craighead, H.G.: Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006)CrossRef Craighead, H.G.: Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006)CrossRef
47.
go back to reference Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRef Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRef
48.
go back to reference Spinks, G.M., Wallace, G.G., Fifield, L.S., Dalton, L.R., Mazzoldi, A., De Rossi, D., Khayrullin, I.I., Baughman, R.H., Pneumatic carbon nanotube actuators. Adv. Mater. 14, 1728–1732 (2002)CrossRef Spinks, G.M., Wallace, G.G., Fifield, L.S., Dalton, L.R., Mazzoldi, A., De Rossi, D., Khayrullin, I.I., Baughman, R.H., Pneumatic carbon nanotube actuators. Adv. Mater. 14, 1728–1732 (2002)CrossRef
49.
go back to reference Schoch, R.B., Han, J.Y., Renaud, P., Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)CrossRef Schoch, R.B., Han, J.Y., Renaud, P., Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)CrossRef
50.
go back to reference Král, P., Shapiro, M.: Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 86, 131 (2001)CrossRef Král, P., Shapiro, M.: Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 86, 131 (2001)CrossRef
51.
go back to reference Ghosh, S., Sood, A.K., Kumar, N.: Carbon nanotube flow sensors. Science 299, 1042 (2003). US Patent No. 6718834 B1 Ghosh, S., Sood, A.K., Kumar, N.: Carbon nanotube flow sensors. Science 299, 1042 (2003). US Patent No. 6718834 B1
52.
go back to reference Sood, A.K., Ghosh, S.: Direct generation of a voltage and current by gas flow over carbon nanotubes and semiconductors. Phys. Rev. Lett. 93, 086601 (2004)CrossRef Sood, A.K., Ghosh, S.: Direct generation of a voltage and current by gas flow over carbon nanotubes and semiconductors. Phys. Rev. Lett. 93, 086601 (2004)CrossRef
53.
go back to reference Subramaniam, C., Pradeep, T., Chakrabarti, J.: Flow-induced transverse electrical potential across an assembly of gold nanoparticles. Phys. Rev. Lett. 95, 164501 (2005)CrossRef Subramaniam, C., Pradeep, T., Chakrabarti, J.: Flow-induced transverse electrical potential across an assembly of gold nanoparticles. Phys. Rev. Lett. 95, 164501 (2005)CrossRef
54.
go back to reference Bourlon, B., Wong, J., Miko, C., Forro, L., Bockrath, M.: A nanoscale probe for fluidic and ionic transport. Nat. Nanotech. 2, 104 (2006)CrossRef Bourlon, B., Wong, J., Miko, C., Forro, L., Bockrath, M.: A nanoscale probe for fluidic and ionic transport. Nat. Nanotech. 2, 104 (2006)CrossRef
55.
go back to reference Fu, J.P., Schoch, R.B., Stevens, A.L., Tannenbaum, S.R., Han, J.Y.: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotech. 2, 121 (2007)CrossRef Fu, J.P., Schoch, R.B., Stevens, A.L., Tannenbaum, S.R., Han, J.Y.: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotech. 2, 121 (2007)CrossRef
56.
go back to reference Linke, H., et al.: Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006)CrossRef Linke, H., et al.: Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006)CrossRef
57.
go back to reference Akin, D., et al.: Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotech. 2, 441–449 (2007)CrossRef Akin, D., et al.: Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotech. 2, 441–449 (2007)CrossRef
58.
go back to reference Hitoshi, O., Radnai, T.: Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157 (1993)CrossRef Hitoshi, O., Radnai, T.: Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157 (1993)CrossRef
59.
go back to reference Cabria, I., Mintmire, J.W., White, C.T.: Metallic and semiconducting narrow carbon nanotubes. Phys. Rev. B 67, 121406(R) (2003) Cabria, I., Mintmire, J.W., White, C.T.: Metallic and semiconducting narrow carbon nanotubes. Phys. Rev. B 67, 121406(R) (2003)
60.
go back to reference Blasé, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335 (1994)CrossRef Blasé, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335 (1994)CrossRef
61.
go back to reference McHale, G., Newton, M.I., Carroll, B.J.: The shape and stability of small liquid drops on fibers. Oil Gas Sci. Technol. Rev. IFP 56, 47 (2006)CrossRef McHale, G., Newton, M.I., Carroll, B.J.: The shape and stability of small liquid drops on fibers. Oil Gas Sci. Technol. Rev. IFP 56, 47 (2006)CrossRef
62.
go back to reference Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)CrossRef Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)CrossRef
64.
go back to reference Kim, H.Y., Lee, H.J., Kang, B.H.: Sliding of liquid drops down an inclined solid surface. J. Coll. Int. Sci. 247, 372 (2002)CrossRef Kim, H.Y., Lee, H.J., Kang, B.H.: Sliding of liquid drops down an inclined solid surface. J. Coll. Int. Sci. 247, 372 (2002)CrossRef
65.
66.
go back to reference Brancker, A.V.: Viscosity-temperature dependence. Nature 166, 905 (1950) Brancker, A.V.: Viscosity-temperature dependence. Nature 166, 905 (1950)
67.
go back to reference Vergeles, M., Keblinski, P., Koplik, J., Banavar, J.R.: Stokes drag and lubrication flows: a molecular dynamics study. Phys. Rev. E 53, 4852 (1996)CrossRef Vergeles, M., Keblinski, P., Koplik, J., Banavar, J.R.: Stokes drag and lubrication flows: a molecular dynamics study. Phys. Rev. E 53, 4852 (1996)CrossRef
68.
go back to reference Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)CrossRef Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)CrossRef
69.
70.
go back to reference Laage, D., Hynes, J.T.: A molecular jump mechanism of water reorientation. Science 311, 832 (2006)CrossRef Laage, D., Hynes, J.T.: A molecular jump mechanism of water reorientation. Science 311, 832 (2006)CrossRef
71.
go back to reference Král, P., Jauho, A.P.: Resonant tunneling in a pulsed phonon field. Phys. Rev. B 59, 7656 (1999)CrossRef Král, P., Jauho, A.P.: Resonant tunneling in a pulsed phonon field. Phys. Rev. B 59, 7656 (1999)CrossRef
72.
go back to reference Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S.: Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002)CrossRef Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S.: Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002)CrossRef
73.
go back to reference Holt, J.K., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006)CrossRef Holt, J.K., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006)CrossRef
74.
go back to reference Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 483, 44 (2005)CrossRef Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 483, 44 (2005)CrossRef
75.
go back to reference Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7, 697 (2007)CrossRef Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7, 697 (2007)CrossRef
76.
go back to reference Zhou, J.J., Noca, F., Gharib, M.: Flow conveying and diagnosis with carbon nanotube arrays. Nanotechnology 17, 4845 (2006)CrossRef Zhou, J.J., Noca, F., Gharib, M.: Flow conveying and diagnosis with carbon nanotube arrays. Nanotechnology 17, 4845 (2006)CrossRef
77.
go back to reference Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2, 87 (2007)CrossRef Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2, 87 (2007)CrossRef
78.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
79.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
80.
go back to reference Berner, S., Corso, M., Widmer, R., Groening, O., Laskowski, R., Blaha, P., Schwarz, K., Goriachko, A., Over, H., Gsell, S., Schreck, M., Sachdev, H., Greber, T., Osterwalder, J.: Boron nitride nanomesh: functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 46, 5115–5119 (2007)CrossRef Berner, S., Corso, M., Widmer, R., Groening, O., Laskowski, R., Blaha, P., Schwarz, K., Goriachko, A., Over, H., Gsell, S., Schreck, M., Sachdev, H., Greber, T., Osterwalder, J.: Boron nitride nanomesh: functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 46, 5115–5119 (2007)CrossRef
81.
go back to reference Laskowski, R., Blaha, P., Gallauner, T., Schwarz, K.: Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 98, 106802 (2007)CrossRef Laskowski, R., Blaha, P., Gallauner, T., Schwarz, K.: Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 98, 106802 (2007)CrossRef
82.
go back to reference Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)CrossRef Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)CrossRef
83.
go back to reference Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRef Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRef
84.
go back to reference Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef
85.
go back to reference Tapasztó, L., Dobrik, G., Lambin, P., Biró, L.P.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008)CrossRef Tapasztó, L., Dobrik, G., Lambin, P., Biró, L.P.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008)CrossRef
86.
go back to reference Stampfer, C., Guttinger, J., Hellmuller, S., Molitor, F., Ensslin, K., Ihn, T.: Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009)CrossRef Stampfer, C., Guttinger, J., Hellmuller, S., Molitor, F., Ensslin, K., Ihn, T.: Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009)CrossRef
87.
go back to reference Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Kelly, K.F., Yakobson, B.I., Ajayan, P.M.: Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008)CrossRef Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Kelly, K.F., Yakobson, B.I., Ajayan, P.M.: Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008)CrossRef
88.
go back to reference Campos, L.C., Manfrinato, R.V., Sanchez-Yamagishi, J.D., Kong, J., Jarillo-Herrero, P.: Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009)CrossRef Campos, L.C., Manfrinato, R.V., Sanchez-Yamagishi, J.D., Kong, J., Jarillo-Herrero, P.: Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009)CrossRef
89.
go back to reference Zhu, Z.P., Su, D.S., Weinberg, G., Schlogl, R.: Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4, 2255–2259 (2004)CrossRef Zhu, Z.P., Su, D.S., Weinberg, G., Schlogl, R.: Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4, 2255–2259 (2004)CrossRef
90.
go back to reference Jin, W., Fukushima, T., Niki, M., Kosaka, A., Ishii, N., Aida, T.: Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. Proc. Natl. Acad. Sci. USA 102, 10801–10806 (2005)CrossRef Jin, W., Fukushima, T., Niki, M., Kosaka, A., Ishii, N., Aida, T.: Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. Proc. Natl. Acad. Sci. USA 102, 10801–10806 (2005)CrossRef
91.
go back to reference Chen, Q., Chen, T., Pan, G.-B., Yan, H.-J., Song, W.-G., Wan, L.-J., Li, Z.-T., Wang, Z.-H., Shang, B., Yuan, L.-F., Yang, J.-L.: Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain. Proc. Natl. Acad. Sci. USA 105, 16849–16854 (2008)CrossRef Chen, Q., Chen, T., Pan, G.-B., Yan, H.-J., Song, W.-G., Wan, L.-J., Li, Z.-T., Wang, Z.-H., Shang, B., Yuan, L.-F., Yang, J.-L.: Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain. Proc. Natl. Acad. Sci. USA 105, 16849–16854 (2008)CrossRef
92.
go back to reference Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
93.
go back to reference Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)CrossRef Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)CrossRef
94.
go back to reference Gómez-Navarro, C., Burghard, M., Kern, K.: Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008)CrossRef Gómez-Navarro, C., Burghard, M., Kern, K.: Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008)CrossRef
95.
go back to reference Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRef Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRef
96.
go back to reference Braga, S.F., Coluci, V.R., Legoas, S.B., Giro, R., Galvao, D.S., Baughman, R.H.: Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)CrossRef Braga, S.F., Coluci, V.R., Legoas, S.B., Giro, R., Galvao, D.S., Baughman, R.H.: Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)CrossRef
97.
go back to reference Yu, D., Liu, F.: Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7, 3046–3050 (2007)CrossRef Yu, D., Liu, F.: Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7, 3046–3050 (2007)CrossRef
98.
go back to reference Sidorov, A., Mudd, D., Sumanasekera, G, Ouseph, P.J., Jayanthi, C.S., Wu, S.-Y.: Electrostatic deposition of graphene in a gaseous environment: a deterministic route for synthesizing rolled graphenes? Nanotechnology 20, 055611 (2009)CrossRef Sidorov, A., Mudd, D., Sumanasekera, G, Ouseph, P.J., Jayanthi, C.S., Wu, S.-Y.: Electrostatic deposition of graphene in a gaseous environment: a deterministic route for synthesizing rolled graphenes? Nanotechnology 20, 055611 (2009)CrossRef
99.
go back to reference Martel, R., Shea, R.H., Avouris, P.: Ring formation in single-wall carbon nanotubes. J. Phys. Chem. B 103, 7551–7556 (1999)CrossRef Martel, R., Shea, R.H., Avouris, P.: Ring formation in single-wall carbon nanotubes. J. Phys. Chem. B 103, 7551–7556 (1999)CrossRef
100.
go back to reference Huang, J., Juszkiewicz, M., de Jeu, W.H., Cerda, E., Emrick, T., Menon, N., Russell, T.P.: Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2007)CrossRef Huang, J., Juszkiewicz, M., de Jeu, W.H., Cerda, E., Emrick, T., Menon, N., Russell, T.P.: Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2007)CrossRef
101.
go back to reference Py, C., Reverdy, P., Doppler, L., Bico, J., Roman B., Baroud, C.N.: Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007)CrossRef Py, C., Reverdy, P., Doppler, L., Bico, J., Roman B., Baroud, C.N.: Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007)CrossRef
102.
go back to reference Ellis, R.J., Vandervies, S.M.: Molecular chaperones. Annu. Rev. Biochem. 60, 321–347 (1991)CrossRef Ellis, R.J., Vandervies, S.M.: Molecular chaperones. Annu. Rev. Biochem. 60, 321–347 (1991)CrossRef
103.
go back to reference Juniper, B.E., Robins, R.J., Joel, D.M.: The Carnivorous Plants. Academic, London (1989). ISBN 0-1239-2170-8 Juniper, B.E., Robins, R.J., Joel, D.M.: The Carnivorous Plants. Academic, London (1989). ISBN 0-1239-2170-8
104.
go back to reference Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002)CrossRef Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002)CrossRef
105.
go back to reference Duwez, A.-S., Cuenot, S., Jér̂ome, C., Gabriel, S., Jér̂ome, R., Rapino, S., Zerbetto, F.: Mechanochemistry: targeted delivery of single molecules. Nat. Nanotechnol. 1, 122–125 (2006) Duwez, A.-S., Cuenot, S., Jér̂ome, C., Gabriel, S., Jér̂ome, R., Rapino, S., Zerbetto, F.: Mechanochemistry: targeted delivery of single molecules. Nat. Nanotechnol. 1, 122–125 (2006)
106.
go back to reference Walther, J.H., Werder, T., Jaffe, R.L., Gonnet, P., Bergdorf, M., Zimmerli, U., Koumoutsakos, P.: Water–carbon interactions III: the influence of surface and fluid impurities. Phys. Chem. Chem. Phys. 6, 1988–1995 (2004)CrossRef Walther, J.H., Werder, T., Jaffe, R.L., Gonnet, P., Bergdorf, M., Zimmerli, U., Koumoutsakos, P.: Water–carbon interactions III: the influence of surface and fluid impurities. Phys. Chem. Chem. Phys. 6, 1988–1995 (2004)CrossRef
Metadata
Title
Water Nanodroplets: Molecular Drag and Self-assembly
Authors
J. Russell
B. Wang
N. Patra
P. Král
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-9472-0_13

Premium Partners