Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions

Authors : Shavkat Nizamov, Vladimir M. Mirsky

Published in: In-situ Characterization Techniques for Nanomaterials

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

During the past two decades, nanomaterials have had an enormous diversity of applications in different industrial fields and fundamental research. Some of these nanomaterials are specifically engineered to exhibit unique optical, electrical, or other physical or chemical characteristics. Owing to these attributes, the products containing various engineered nanoparticles (NP) cover large segments of the market from clothing to electronics and healthcare products [1]. The rapid development of nanotechnologies, their industrial applications, and related nanosafety concerns demand sensitive analytical methods for the identification and analysis of nanoparticles (NPs) in very different media [2]. In the same time, there are serious concerns on possible toxicity of nanoparticles for humans and environment [3]. Engineered NPs (ENPs) have to be analyzed not only during their production, in pure and concentrated form, but also at trace concentrations in environment, drinking water and food, healthcare and pharmacological products, biological fluids, etc. Ideally, such a technique should provide a possibility to detect NPs at the level of single particles and deliver information on their concentration, core and surface chemical composition, size, and shape [2–4].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805CrossRef Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805CrossRef
2.
go back to reference Babick F, Mielke J, Wohlleben W, Weigel S, Hodoroaba V-D (2016) How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J Nanopart Res 18:158CrossRef Babick F, Mielke J, Wohlleben W, Weigel S, Hodoroaba V-D (2016) How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J Nanopart Res 18:158CrossRef
3.
go back to reference Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205CrossRef Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205CrossRef
4.
go back to reference Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M et al (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65:119–125CrossRef Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M et al (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65:119–125CrossRef
5.
go back to reference Nič M, Jirát J, Košata B, Jenkins A, McNaught A (eds) (2009) IUPAC compendium of chemical terminology: gold book. 2.1.0. IUPAC, Research Triagle Park Nič M, Jirát J, Košata B, Jenkins A, McNaught A (eds) (2009) IUPAC compendium of chemical terminology: gold book. 2.1.0. IUPAC, Research Triagle Park
6.
go back to reference Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, Mineola Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, Mineola
7.
go back to reference Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef
8.
go back to reference Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253CrossRef Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253CrossRef
9.
go back to reference Medebach M, Moitzi C, Freiberger N, Glatter O (2007) Dynamic light scattering in turbid colloidal dispersions: a comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument. J Colloid Interface Sci 305:88–93CrossRef Medebach M, Moitzi C, Freiberger N, Glatter O (2007) Dynamic light scattering in turbid colloidal dispersions: a comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument. J Colloid Interface Sci 305:88–93CrossRef
10.
go back to reference Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158CrossRef Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158CrossRef
11.
go back to reference Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4:177–185CrossRef Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4:177–185CrossRef
12.
go back to reference Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134CrossRef Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134CrossRef
13.
go back to reference Bressel L, Hass R, Reich O (2013) Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J Quant Spectrosc Radiat Transf 126:122–129CrossRef Bressel L, Hass R, Reich O (2013) Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J Quant Spectrosc Radiat Transf 126:122–129CrossRef
14.
go back to reference Makra I, Terejánszky P, Gyurcsányi RE (2015) A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX 2:91–99CrossRef Makra I, Terejánszky P, Gyurcsányi RE (2015) A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX 2:91–99CrossRef
15.
go back to reference Quinten M (2011) Optical properties of nanoparticle systems: Mie and beyond. Wiley-VCH, WeinheimCrossRef Quinten M (2011) Optical properties of nanoparticle systems: Mie and beyond. Wiley-VCH, WeinheimCrossRef
16.
go back to reference Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology? Angew Chem Int Ed 51:11208–11212CrossRef Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology? Angew Chem Int Ed 51:11208–11212CrossRef
17.
go back to reference Xiao L, Qiao Y, He Y, Yeung ES (2010) Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal Chem 82:5268–5274CrossRef Xiao L, Qiao Y, He Y, Yeung ES (2010) Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal Chem 82:5268–5274CrossRef
18.
go back to reference Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15:2101CrossRef Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15:2101CrossRef
19.
go back to reference Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810CrossRef Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810CrossRef
20.
go back to reference Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671CrossRef Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671CrossRef
21.
go back to reference Kramberger P, Ciringer M, Štrancar A, Peterka M (2012) Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J 9:265CrossRef Kramberger P, Ciringer M, Štrancar A, Peterka M (2012) Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J 9:265CrossRef
22.
go back to reference Tian X, Nejadnik MR, Baunsgaard D, Henriksen A, Rischel C, Jiskoot W (2016) A comprehensive evaluation of nanoparticle tracking analysis (nanosight) for characterization of proteinaceous submicron particles. J Pharm Sci 105:3366–3375CrossRef Tian X, Nejadnik MR, Baunsgaard D, Henriksen A, Rischel C, Jiskoot W (2016) A comprehensive evaluation of nanoparticle tracking analysis (nanosight) for characterization of proteinaceous submicron particles. J Pharm Sci 105:3366–3375CrossRef
23.
go back to reference Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30:473–483CrossRef Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30:473–483CrossRef
24.
go back to reference Giavazzi F, Brogioli D, Trappe V, Bellini T, Cerbino R (2009) Scattering information obtained by optical microscopy: differential dynamic microscopy and beyond. Phys Rev E 80:031403CrossRef Giavazzi F, Brogioli D, Trappe V, Bellini T, Cerbino R (2009) Scattering information obtained by optical microscopy: differential dynamic microscopy and beyond. Phys Rev E 80:031403CrossRef
25.
go back to reference Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100:188102CrossRef Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100:188102CrossRef
26.
go back to reference Martinez VA, Besseling R, Croze OA, Tailleur J, Reufer M, Schwarz-Linek J et al (2012) Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms. Biophys J 103:1637–1647CrossRef Martinez VA, Besseling R, Croze OA, Tailleur J, Reufer M, Schwarz-Linek J et al (2012) Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms. Biophys J 103:1637–1647CrossRef
27.
go back to reference Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN et al (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106:018101CrossRef Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN et al (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106:018101CrossRef
28.
go back to reference Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−vis spectra. Anal Chem 79:4215–4221CrossRef Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−vis spectra. Anal Chem 79:4215–4221CrossRef
29.
go back to reference Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855CrossRef Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855CrossRef
30.
go back to reference Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M et al (2011) Determination of the size of quantum dots by fluorescence spectroscopy. Analyst 136:2391CrossRef Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M et al (2011) Determination of the size of quantum dots by fluorescence spectroscopy. Analyst 136:2391CrossRef
31.
go back to reference Yim S-Y, Park J-H, Kim M-G (2015) Dark-field spectral imaging microscope for localized surface plasmon resonance-based biosensing. Proc SPIE 9523:952307CrossRef Yim S-Y, Park J-H, Kim M-G (2015) Dark-field spectral imaging microscope for localized surface plasmon resonance-based biosensing. Proc SPIE 9523:952307CrossRef
32.
go back to reference Boyer D (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163CrossRef Boyer D (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163CrossRef
33.
go back to reference Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M (2010) Detection limits in photothermal microscopy. Chem Sci 1:343CrossRef Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M (2010) Detection limits in photothermal microscopy. Chem Sci 1:343CrossRef
34.
go back to reference Diwakar PK, Loper KH, Matiaske A-M, Hahn DW (2012) Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J Anal At Spectrom 27:1110CrossRef Diwakar PK, Loper KH, Matiaske A-M, Hahn DW (2012) Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J Anal At Spectrom 27:1110CrossRef
35.
go back to reference Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V et al (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6:29936CrossRef Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V et al (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6:29936CrossRef
36.
go back to reference Schwertfeger DM, Velicogna JR, Jesmer AH, Scroggins RP, Princz JI (2016) Single particle-inductively coupled plasma mass spectroscopy analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal Chem 88:9908–9914CrossRef Schwertfeger DM, Velicogna JR, Jesmer AH, Scroggins RP, Princz JI (2016) Single particle-inductively coupled plasma mass spectroscopy analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal Chem 88:9908–9914CrossRef
37.
go back to reference Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278CrossRef Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278CrossRef
38.
go back to reference Agbabiaka A, Wiltfong M, Park C (2013) Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanopart 2013:1–11CrossRef Agbabiaka A, Wiltfong M, Park C (2013) Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanopart 2013:1–11CrossRef
39.
go back to reference Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116:11128–11180CrossRef Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116:11128–11180CrossRef
40.
go back to reference Chu B, Liu T (2000) Characterization of nanoparticles by scattering techniques. J Nanopart Res 2:29–41CrossRef Chu B, Liu T (2000) Characterization of nanoparticles by scattering techniques. J Nanopart Res 2:29–41CrossRef
41.
go back to reference Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658CrossRef Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658CrossRef
42.
go back to reference Roberts GS, Yu S, Zeng Q, Chan LCL, Anderson W, Colby AH et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25CrossRef Roberts GS, Yu S, Zeng Q, Chan LCL, Anderson W, Colby AH et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25CrossRef
43.
go back to reference Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF (2013) Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci 4:655–663CrossRef Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF (2013) Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci 4:655–663CrossRef
44.
go back to reference Makra I, Gyurcsányi RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43:55–59CrossRef Makra I, Gyurcsányi RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43:55–59CrossRef
45.
go back to reference Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334CrossRef Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334CrossRef
46.
go back to reference Yang L, Yamamoto T (2016) Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol 7:1500 Yang L, Yamamoto T (2016) Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol 7:1500
47.
go back to reference Cheng W, Compton RG (2014) Electrochemical detection of nanoparticles by ‘nano-impact’ methods. TrAC Trends Anal Chem 58:79–89CrossRef Cheng W, Compton RG (2014) Electrochemical detection of nanoparticles by ‘nano-impact’ methods. TrAC Trends Anal Chem 58:79–89CrossRef
48.
go back to reference Rees NV (2014) Electrochemical insight from nanoparticle collisions with electrodes: a mini-review. Electrochem Commun 43:83–86CrossRef Rees NV (2014) Electrochemical insight from nanoparticle collisions with electrodes: a mini-review. Electrochem Commun 43:83–86CrossRef
49.
go back to reference Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG (2017) Electrode–particle impacts: a users guide. Phys Chem Chem Phys 19:28–43CrossRef Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG (2017) Electrode–particle impacts: a users guide. Phys Chem Chem Phys 19:28–43CrossRef
50.
go back to reference Sokolov SV, Bartlett TR, Fair P, Fletcher S, Compton RG (2016) Femtomolar detection of silver nanoparticles by flow-enhanced direct-impact voltammetry at a microelectrode array. Anal Chem 88:8908–8912CrossRef Sokolov SV, Bartlett TR, Fair P, Fletcher S, Compton RG (2016) Femtomolar detection of silver nanoparticles by flow-enhanced direct-impact voltammetry at a microelectrode array. Anal Chem 88:8908–8912CrossRef
51.
go back to reference DeBlois RW, Bean CP, Wesley RK (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61:323–335CrossRef DeBlois RW, Bean CP, Wesley RK (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61:323–335CrossRef
52.
go back to reference Aliano A, Cicero G, Nili H, Green NG, García-Sánchez P, Ramos A et al (2012) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 83–89 Aliano A, Cicero G, Nili H, Green NG, García-Sánchez P, Ramos A et al (2012) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 83–89
53.
go back to reference Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci: Processes Impacts 16:1338 Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci: Processes Impacts 16:1338
54.
go back to reference Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P (2005) Natural sample fractionation by FlFFF–MALLS–TEM: sample stabilization, preparation, pre-concentration and fractionation. J Chromatogr A 1093:156–166CrossRef Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P (2005) Natural sample fractionation by FlFFF–MALLS–TEM: sample stabilization, preparation, pre-concentration and fractionation. J Chromatogr A 1093:156–166CrossRef
55.
go back to reference Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) Scanning probe microscopy for nanoscale electrochemical imaging. Anal Chem 89:342–357CrossRef Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) Scanning probe microscopy for nanoscale electrochemical imaging. Anal Chem 89:342–357CrossRef
56.
go back to reference Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev 116:13234–13278CrossRef Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev 116:13234–13278CrossRef
57.
go back to reference Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9:802–823CrossRef Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9:802–823CrossRef
58.
go back to reference Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR (2015) High-speed electrochemical imaging. ACS Nano 9:8942–8952CrossRef Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR (2015) High-speed electrochemical imaging. ACS Nano 9:8942–8952CrossRef
59.
go back to reference Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2:532–536CrossRef Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2:532–536CrossRef
60.
go back to reference Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242CrossRef Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242CrossRef
61.
go back to reference Hodnik N, Dehm G, Mayrhofer KJJ (2016) Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc Chem Res 49:2015–2022CrossRef Hodnik N, Dehm G, Mayrhofer KJJ (2016) Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc Chem Res 49:2015–2022CrossRef
62.
go back to reference Stuart EJE, Tschulik K, Omanović D, Cullen JT, Jurkschat K, Crossley A et al (2013) Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media. Nanotechnology 24:444002CrossRef Stuart EJE, Tschulik K, Omanović D, Cullen JT, Jurkschat K, Crossley A et al (2013) Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media. Nanotechnology 24:444002CrossRef
63.
go back to reference Moretto LM, Kalcher K (eds) (2015) Environmental analysis by electrochemical sensors and biosensors. Springer, New York Moretto LM, Kalcher K (eds) (2015) Environmental analysis by electrochemical sensors and biosensors. Springer, New York
64.
go back to reference Wagner T, Lazar J, Schnakenberg U, Böker A (2016) In situ electrochemical impedance spectroscopy of electrostatically driven selective gold nanoparticle adsorption on block copolymer lamellae. ACS Appl Mater Interfaces 8:27282–27290CrossRef Wagner T, Lazar J, Schnakenberg U, Böker A (2016) In situ electrochemical impedance spectroscopy of electrostatically driven selective gold nanoparticle adsorption on block copolymer lamellae. ACS Appl Mater Interfaces 8:27282–27290CrossRef
65.
go back to reference Proll G, Markovic G, Fechner P, Proell F, Gauglitz G (2017) Reflectometric interference spectroscopy. In: Rasooly A, Prickril B (eds) Biosensors and biodetection. Springer, New York, pp 207–220CrossRef Proll G, Markovic G, Fechner P, Proell F, Gauglitz G (2017) Reflectometric interference spectroscopy. In: Rasooly A, Prickril B (eds) Biosensors and biodetection. Springer, New York, pp 207–220CrossRef
66.
go back to reference Hänel C, Gauglitz G (2002) Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal Bioanal Chem 372:91–100CrossRef Hänel C, Gauglitz G (2002) Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal Bioanal Chem 372:91–100CrossRef
67.
go back to reference Gauglitz G (2005) Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev Sci Instrum 76:062224CrossRef Gauglitz G (2005) Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev Sci Instrum 76:062224CrossRef
68.
go back to reference Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369CrossRef Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369CrossRef
69.
go back to reference Olsson ALJ, Quevedo IR, He D, Basnet M, Tufenkji N (2013) Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano 7:7833–7843CrossRef Olsson ALJ, Quevedo IR, He D, Basnet M, Tufenkji N (2013) Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano 7:7833–7843CrossRef
70.
go back to reference Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114CrossRef Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114CrossRef
71.
go back to reference Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184CrossRef Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184CrossRef
72.
go back to reference Teigell Beneitez N, Missinne J, Schleipen J, Orsel J, Prins MWJ, Van Steenberge G (2014) Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors. Proc SPIE 8954:89540QCrossRef Teigell Beneitez N, Missinne J, Schleipen J, Orsel J, Prins MWJ, Van Steenberge G (2014) Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors. Proc SPIE 8954:89540QCrossRef
73.
go back to reference Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H, He L et al (2014) Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci 111:E3836–E3844CrossRef Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H, He L et al (2014) Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci 111:E3836–E3844CrossRef
74.
go back to reference Baaske M, Vollmer F (2012) Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13:427–436CrossRef Baaske M, Vollmer F (2012) Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13:427–436CrossRef
75.
go back to reference Fujimaki M, Nomura K, Sato K, Kato T, Gopinath SCB, Wang X et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732CrossRef Fujimaki M, Nomura K, Sato K, Kato T, Gopinath SCB, Wang X et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732CrossRef
76.
go back to reference Gopinath SCB, Awazu K, Fujimaki M (2010) Detection of influenza viruses by a waveguide-mode sensor. Anal Methods 2:1880CrossRef Gopinath SCB, Awazu K, Fujimaki M (2010) Detection of influenza viruses by a waveguide-mode sensor. Anal Methods 2:1880CrossRef
77.
go back to reference Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRef Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRef
78.
go back to reference Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRef Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRef
79.
go back to reference Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648CrossRef Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648CrossRef
80.
go back to reference Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S (2012) Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem 403:2843–2850CrossRef Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S (2012) Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem 403:2843–2850CrossRef
81.
go back to reference Klemm F, Johnson R, Mirsky VM (2015) Binding of protein nanoparticles to immobilized receptors. Sensors Actuators B Chem 208:616–621CrossRef Klemm F, Johnson R, Mirsky VM (2015) Binding of protein nanoparticles to immobilized receptors. Sensors Actuators B Chem 208:616–621CrossRef
82.
go back to reference Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors 12:16420–16432CrossRef Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors 12:16420–16432CrossRef
83.
go back to reference Rupert DLM, Lässer C, Eldh M, Block S, Zhdanov VP, Lotvall JO et al (2014) Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936CrossRef Rupert DLM, Lässer C, Eldh M, Block S, Zhdanov VP, Lotvall JO et al (2014) Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936CrossRef
84.
go back to reference Rupert DLM, Shelke GV, Emilsson G, Claudio V, Block S, Lässer C et al (2016) Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles. Anal Chem 88:9980–9988CrossRef Rupert DLM, Shelke GV, Emilsson G, Claudio V, Block S, Lässer C et al (2016) Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles. Anal Chem 88:9980–9988CrossRef
85.
go back to reference Nizamov S, Mirsky VM (2011) Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens Bioelectron 28:263–269CrossRef Nizamov S, Mirsky VM (2011) Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens Bioelectron 28:263–269CrossRef
86.
go back to reference Axelrod D (1989) Chapter 9. Total internal reflection fluorescence microscopy. In: Methods in cell biology. Elsevier, Imprint: Academic Press, pp 245–270 Axelrod D (1989) Chapter 9. Total internal reflection fluorescence microscopy. In: Methods in cell biology. Elsevier, Imprint: Academic Press, pp 245–270
87.
go back to reference Block S, Fast BJ, Lundgren A, Zhdanov VP, Höök F (2016) Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat Commun 7:12956CrossRef Block S, Fast BJ, Lundgren A, Zhdanov VP, Höök F (2016) Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat Commun 7:12956CrossRef
88.
go back to reference Olsson T, Zhdanov VP, Höök F (2015) Total internal reflection fluorescence microscopy for determination of size of individual immobilized vesicles: theory and experiment. J Appl Phys 118:064702CrossRef Olsson T, Zhdanov VP, Höök F (2015) Total internal reflection fluorescence microscopy for determination of size of individual immobilized vesicles: theory and experiment. J Appl Phys 118:064702CrossRef
89.
go back to reference Agnarsson B, Wayment-Steele HK, Höök F, Kunze A (2016) Monitoring of single and double lipid membrane formation with high spatiotemporal resolution using evanescent light scattering microscopy. Nanoscale 8:19219–19223CrossRef Agnarsson B, Wayment-Steele HK, Höök F, Kunze A (2016) Monitoring of single and double lipid membrane formation with high spatiotemporal resolution using evanescent light scattering microscopy. Nanoscale 8:19219–19223CrossRef
90.
go back to reference Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M et al (2015) Evanescent light-scattering microscopy for label-free interfacial imaging: from single Sub-100 nm vesicles to live cells. ACS Nano 9:11849–11862CrossRef Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M et al (2015) Evanescent light-scattering microscopy for label-free interfacial imaging: from single Sub-100 nm vesicles to live cells. ACS Nano 9:11849–11862CrossRef
91.
go back to reference Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG (2008) Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc 231:168–179CrossRef Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG (2008) Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc 231:168–179CrossRef
92.
go back to reference Velinov T, Asenovska Y, Marinkova D, Yotova L, Stoicova S, Bivolarska M et al (2011) Total internal reflection imaging of microorganism adhesion using an oil immersion objective. Colloids and Surfaces B: Biointerfaces 88(1):407–412CrossRef Velinov T, Asenovska Y, Marinkova D, Yotova L, Stoicova S, Bivolarska M et al (2011) Total internal reflection imaging of microorganism adhesion using an oil immersion objective. Colloids and Surfaces B: Biointerfaces 88(1):407–412CrossRef
93.
go back to reference Wang W, Tao N (2014) Detection, counting, and imaging of single nanoparticles. Anal Chem 86:2–14CrossRef Wang W, Tao N (2014) Detection, counting, and imaging of single nanoparticles. Anal Chem 86:2–14CrossRef
94.
go back to reference Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2009) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35CrossRef Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2009) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35CrossRef
95.
go back to reference Yang C-T, Wu L, Liu X, Tran NT, Bai P, Liedberg B et al (2016) Exploiting surface-plasmon-enhanced light scattering for the design of ultrasensitive biosensing modality. Anal Chem 88:11924–11930CrossRef Yang C-T, Wu L, Liu X, Tran NT, Bai P, Liedberg B et al (2016) Exploiting surface-plasmon-enhanced light scattering for the design of ultrasensitive biosensing modality. Anal Chem 88:11924–11930CrossRef
96.
go back to reference Rengevych OV, Beketov GV, Ushenin YV (2014) Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy. Semicond Phys Quantum Electron Optoelectron 17(4):368–373CrossRef Rengevych OV, Beketov GV, Ushenin YV (2014) Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy. Semicond Phys Quantum Electron Optoelectron 17(4):368–373CrossRef
97.
go back to reference Loison O, Fort E (2013) Transmission surface plasmon resonance microscopy. Appl Phys Lett 103:133110CrossRef Loison O, Fort E (2013) Transmission surface plasmon resonance microscopy. Appl Phys Lett 103:133110CrossRef
98.
go back to reference Meyer SA, Le REC, Etchegoin PG (2011) Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal Chem 83:2337–2344CrossRef Meyer SA, Le REC, Etchegoin PG (2011) Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal Chem 83:2337–2344CrossRef
99.
go back to reference Meyer SA, Auguié B, Le Ru EC, Etchegoin PG (2012) Combined SPR and SERS microscopy in the Kretschmann configuration. J Phys Chem A 116:1000–1007CrossRef Meyer SA, Auguié B, Le Ru EC, Etchegoin PG (2012) Combined SPR and SERS microscopy in the Kretschmann configuration. J Phys Chem A 116:1000–1007CrossRef
100.
go back to reference Roy S, Kim J-H, Kellis JT, Poulose AJ, Robertson CR, Gast AP (2002) Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface. Langmuir 18:6319–6323CrossRef Roy S, Kim J-H, Kellis JT, Poulose AJ, Robertson CR, Gast AP (2002) Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface. Langmuir 18:6319–6323CrossRef
101.
go back to reference Balaa K, Devauges V, Goulam Y, Studer V, Lévêque-Fort S, Fort E (2009) Live cell imaging with surface plasmon-mediated fluorescence microscopy. SPIE-OSA 7367:736710 Balaa K, Devauges V, Goulam Y, Studer V, Lévêque-Fort S, Fort E (2009) Live cell imaging with surface plasmon-mediated fluorescence microscopy. SPIE-OSA 7367:736710
102.
go back to reference Thariani R, Yager P (2010) Imaging of surfaces by concurrent surface plasmon resonance and surface plasmon resonance-enhanced fluorescence. Peccoud J, editor. PLoS One 5:e9833CrossRef Thariani R, Yager P (2010) Imaging of surfaces by concurrent surface plasmon resonance and surface plasmon resonance-enhanced fluorescence. Peccoud J, editor. PLoS One 5:e9833CrossRef
103.
go back to reference Avci O, Ünlü N, Özkumur A, Ünlü M (2015) Interferometric reflectance imaging sensor (IRIS) – a platform technology for multiplexed diagnostics and digital detection. Sensors 15:17649–17665CrossRef Avci O, Ünlü N, Özkumur A, Ünlü M (2015) Interferometric reflectance imaging sensor (IRIS) – a platform technology for multiplexed diagnostics and digital detection. Sensors 15:17649–17665CrossRef
104.
go back to reference Sevenler D, Ünlü NL, Ünlü MS (2015) Nanoparticle biosensing with interferometric reflectance imaging. In: Vestergaard MC, Kerman K, Hsing I-M, Tamiya E (eds) Nanobiosensors and nanobioanalyses. Springer, Tokyo, pp 81–95 Sevenler D, Ünlü NL, Ünlü MS (2015) Nanoparticle biosensing with interferometric reflectance imaging. In: Vestergaard MC, Kerman K, Hsing I-M, Tamiya E (eds) Nanobiosensors and nanobioanalyses. Springer, Tokyo, pp 81–95
105.
go back to reference Ortega-Arroyo J, Kukura P (2012) Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 14:15625CrossRef Ortega-Arroyo J, Kukura P (2012) Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 14:15625CrossRef
106.
go back to reference Piliarik M, Sandoghdar V (2014) Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 5:4495CrossRef Piliarik M, Sandoghdar V (2014) Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 5:4495CrossRef
107.
go back to reference Lobinski R, Szpunar J (eds) (2003) Hyphenated techniques in speciation analysis. Royal Society of Chemistry, Cambridge Lobinski R, Szpunar J (eds) (2003) Hyphenated techniques in speciation analysis. Royal Society of Chemistry, Cambridge
108.
go back to reference Cazes J (ed) (2010) Encyclopedia of chromatography, 3rd edn. CRC Press, Boca Raton Cazes J (ed) (2010) Encyclopedia of chromatography, 3rd edn. CRC Press, Boca Raton
109.
go back to reference Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368CrossRef Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368CrossRef
110.
go back to reference Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218:4078–4103CrossRef Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218:4078–4103CrossRef
111.
go back to reference Scott D, Harding SE, Rowe A (eds) (2005) Introduction to differential sedimentation. analytical ultracentrifugation. Royal Society of Chemistry, Cambridge, pp 270–290 Scott D, Harding SE, Rowe A (eds) (2005) Introduction to differential sedimentation. analytical ultracentrifugation. Royal Society of Chemistry, Cambridge, pp 270–290
112.
go back to reference Scott DJ, Harding SE, Rowe AJ, Royal Society of Chemistry (Great Britain) (eds) (2005) Analytical ultracentrifugation: techniques and methods. RSC Publishing, Cambridge Scott DJ, Harding SE, Rowe AJ, Royal Society of Chemistry (Great Britain) (eds) (2005) Analytical ultracentrifugation: techniques and methods. RSC Publishing, Cambridge
113.
go back to reference Krpetić Ž, Davidson AM, Volk M, Lévy R, Brust M, Cooper DL (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7:8881–8890CrossRef Krpetić Ž, Davidson AM, Volk M, Lévy R, Brust M, Cooper DL (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7:8881–8890CrossRef
114.
go back to reference Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330CrossRef Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330CrossRef
115.
go back to reference Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM et al (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225CrossRef Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM et al (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225CrossRef
116.
go back to reference Baalousha M, Kammer FVD, Motelica-Heino M, Hilal HS, Le Coustumer P (2006) Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A 1104:272–281CrossRef Baalousha M, Kammer FVD, Motelica-Heino M, Hilal HS, Le Coustumer P (2006) Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A 1104:272–281CrossRef
117.
go back to reference Rothenhauesler B, Knoll W (1988) Surface plasmon microscopy. Lett Nat 332:615–617CrossRef Rothenhauesler B, Knoll W (1988) Surface plasmon microscopy. Lett Nat 332:615–617CrossRef
118.
go back to reference Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63CrossRef Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63CrossRef
119.
go back to reference Campbell C, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392CrossRef Campbell C, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392CrossRef
120.
go back to reference Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky VM (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110CrossRef Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky VM (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110CrossRef
121.
go back to reference Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R et al (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120CrossRef Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R et al (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120CrossRef
122.
go back to reference Halpern AR, Wood JB, Wang Y, Corn RM (2014) Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS Nano 8:1022CrossRef Halpern AR, Wood JB, Wang Y, Corn RM (2014) Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS Nano 8:1022CrossRef
123.
go back to reference Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966CrossRef Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966CrossRef
124.
go back to reference Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM (2015) Measuring Melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal Chem 87:4973–4979CrossRef Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM (2015) Measuring Melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal Chem 87:4973–4979CrossRef
125.
go back to reference Wang S, Shan X, Patel U, Huang X, Lu J, Li J et al (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 107:16028–16032CrossRef Wang S, Shan X, Patel U, Huang X, Lu J, Li J et al (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 107:16028–16032CrossRef
126.
go back to reference Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983CrossRef Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983CrossRef
127.
go back to reference Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287CrossRef Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287CrossRef
128.
go back to reference Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35CrossRef Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35CrossRef
129.
go back to reference Peterson AW, Halter M, Plant AL, Elliott JT (2016) Surface plasmon resonance microscopy: achieving a quantitative optical response. Rev Sci Instrum 87:093703CrossRef Peterson AW, Halter M, Plant AL, Elliott JT (2016) Surface plasmon resonance microscopy: achieving a quantitative optical response. Rev Sci Instrum 87:093703CrossRef
130.
go back to reference Vander R, Lipson SG (2009) High-resolution surface-plasmon resonance real-time imaging. Opt Lett 34:37–39CrossRef Vander R, Lipson SG (2009) High-resolution surface-plasmon resonance real-time imaging. Opt Lett 34:37–39CrossRef
131.
go back to reference Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L et al (2012) Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol 7:668–672CrossRef Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L et al (2012) Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol 7:668–672CrossRef
132.
go back to reference Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y et al (2014) Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc 136:12584–12587CrossRef Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y et al (2014) Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc 136:12584–12587CrossRef
133.
go back to reference Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–3433CrossRef Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–3433CrossRef
134.
go back to reference Fang Y, Wang H, Yu H, Liu X, Wang W, Chen H-Y et al (2016) Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc Chem Res 49:2614–2624CrossRef Fang Y, Wang H, Yu H, Liu X, Wang W, Chen H-Y et al (2016) Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc Chem Res 49:2614–2624CrossRef
135.
go back to reference Wo X, Luo Y, Tao N, Wang W, Chen H-Y (2016) Measuring the number concentration of arbitrarily-shaped gold nanoparticles with surface plasmon resonance microscopy. SCIENCE CHINA Chem 59:843–847CrossRef Wo X, Luo Y, Tao N, Wang W, Chen H-Y (2016) Measuring the number concentration of arbitrarily-shaped gold nanoparticles with surface plasmon resonance microscopy. SCIENCE CHINA Chem 59:843–847CrossRef
136.
go back to reference Wang Y, Shan X, Wang H, Wang S, Tao N (2017) Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc 139:1376–1379CrossRef Wang Y, Shan X, Wang H, Wang S, Tao N (2017) Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc 139:1376–1379CrossRef
137.
go back to reference Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM (2016) Measuring protein binding to individual hydrogel nanoparticles with single-nanoparticle surface plasmon resonance imaging microscopy. J Phys Chem C 120:16843–16849CrossRef Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM (2016) Measuring protein binding to individual hydrogel nanoparticles with single-nanoparticle surface plasmon resonance imaging microscopy. J Phys Chem C 120:16843–16849CrossRef
138.
139.
go back to reference Smith WJ (2000) Modern optical engineering: the design of optical systems, 3rd edn. McGraw-Hill, New York Smith WJ (2000) Modern optical engineering: the design of optical systems, 3rd edn. McGraw-Hill, New York
140.
go back to reference Laplatine L, Leroy L, Calemczuk R, Baganizi D, Marche PN, Roupioz Y et al (2014) Spatial resolution in prism-based surface plasmon resonance microscopy. Opt Express 22:22771CrossRef Laplatine L, Leroy L, Calemczuk R, Baganizi D, Marche PN, Roupioz Y et al (2014) Spatial resolution in prism-based surface plasmon resonance microscopy. Opt Express 22:22771CrossRef
141.
go back to reference Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Publishing, CambridgeCrossRef Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Publishing, CambridgeCrossRef
142.
go back to reference Nizamov S, Scherbahn V, Mirsky VM (2016) Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem 88:10206–10214CrossRef Nizamov S, Scherbahn V, Mirsky VM (2016) Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem 88:10206–10214CrossRef
143.
go back to reference Sidorenko I, Nizamov S, Hergenröder R, Zybin A, Kuzmichev A, Kiwull B et al (2016) Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim Acta 183:101–109CrossRef Sidorenko I, Nizamov S, Hergenröder R, Zybin A, Kuzmichev A, Kiwull B et al (2016) Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim Acta 183:101–109CrossRef
144.
go back to reference Scherbahn V, Nizamov S, Mirsky VM (2016) Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Microchim Acta 183:2837–2845CrossRef Scherbahn V, Nizamov S, Mirsky VM (2016) Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Microchim Acta 183:2837–2845CrossRef
145.
go back to reference Nizamov S, Kasian O, Mirsky VM (2016) Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed 55:7247–7251CrossRef Nizamov S, Kasian O, Mirsky VM (2016) Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed 55:7247–7251CrossRef
146.
go back to reference Nizamov S, Scherbahn V, Mirsky VM (2015) Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors Actuators B Chem 207:740–747CrossRef Nizamov S, Scherbahn V, Mirsky VM (2015) Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors Actuators B Chem 207:740–747CrossRef
147.
go back to reference Nizamov S, Scherbahn V, Mirsky VM (2017) Ionic referencing in surface plasmon microscopy: visualization of the difference in surface properties of patterned monomolecular layers. Anal Chem 89:3873–3878CrossRef Nizamov S, Scherbahn V, Mirsky VM (2017) Ionic referencing in surface plasmon microscopy: visualization of the difference in surface properties of patterned monomolecular layers. Anal Chem 89:3873–3878CrossRef
148.
go back to reference Zybin A, Shpacovitch V, Skolnik J, Hergenröder R (2017) Optimal conditions for SPR-imaging of nano-objects. Sensors Actuators B Chem 239:338–342CrossRef Zybin A, Shpacovitch V, Skolnik J, Hergenröder R (2017) Optimal conditions for SPR-imaging of nano-objects. Sensors Actuators B Chem 239:338–342CrossRef
149.
go back to reference Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M et al (2010) Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sensors Actuators B Chem 151:281–290CrossRef Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M et al (2010) Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sensors Actuators B Chem 151:281–290CrossRef
150.
go back to reference Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307CrossRef Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307CrossRef
151.
go back to reference Lapresta-Fernández A, Salinas-Castillo A, Anderson de la Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R et al (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39:423–458CrossRef Lapresta-Fernández A, Salinas-Castillo A, Anderson de la Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R et al (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39:423–458CrossRef
152.
go back to reference von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436CrossRef von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436CrossRef
153.
go back to reference Lewis JP (1995) Fast template matching. Vision interface. Canadian Image Processing and Pattern Recognition Society, Quebec, pp 15–19 Lewis JP (1995) Fast template matching. Vision interface. Canadian Image Processing and Pattern Recognition Society, Quebec, pp 15–19
154.
go back to reference Wo X, Li Z, Jiang Y, Li M, Su Y, Wang W et al (2016) Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem 88:2380–2385CrossRef Wo X, Li Z, Jiang Y, Li M, Su Y, Wang W et al (2016) Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem 88:2380–2385CrossRef
155.
go back to reference Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170CrossRef Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170CrossRef
156.
go back to reference Shpacovitch V, Sidorenko I, Lenssen J, Temchura V, Weichert F, Müller H et al (2017) Application of the PAMONO-sensor for quantification of microvesicles and determination of nano-particle size distribution. Sensors 17:244CrossRef Shpacovitch V, Sidorenko I, Lenssen J, Temchura V, Weichert F, Müller H et al (2017) Application of the PAMONO-sensor for quantification of microvesicles and determination of nano-particle size distribution. Sensors 17:244CrossRef
157.
go back to reference Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J, Libuschewski P et al (2015) Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal Biochem 486:62–69CrossRef Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J, Libuschewski P et al (2015) Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal Biochem 486:62–69CrossRef
158.
go back to reference Demetriadou A, Kornyshev AA (2015) Principles of nanoparticle imaging using surface plasmons. New J Phys 17:013041CrossRef Demetriadou A, Kornyshev AA (2015) Principles of nanoparticle imaging using surface plasmons. New J Phys 17:013041CrossRef
159.
go back to reference Demetriadou A (2015) The impact of natural modes in plasmonic imaging. Sci Rep 5:18247CrossRef Demetriadou A (2015) The impact of natural modes in plasmonic imaging. Sci Rep 5:18247CrossRef
160.
go back to reference Son T, Kim D (2015) Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region. Proc SPIE 9340:93400WCrossRef Son T, Kim D (2015) Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region. Proc SPIE 9340:93400WCrossRef
161.
go back to reference Lozovski V (2012) Visualization of Nano-sized objects by scattering of surface plasmon polariton theoretical aspects of the problem. J Comput Theor Nanosci 9:859–863CrossRef Lozovski V (2012) Visualization of Nano-sized objects by scattering of surface plasmon polariton theoretical aspects of the problem. J Comput Theor Nanosci 9:859–863CrossRef
162.
go back to reference Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors Actuators B Chem 160:1210–1215CrossRef Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors Actuators B Chem 160:1210–1215CrossRef
163.
go back to reference Yu H, Shan X, Wang S, Chen H, Tao N (2014) Molecular scale origin of surface plasmon resonance biosensors. Anal Chem 86:8992–8997CrossRef Yu H, Shan X, Wang S, Chen H, Tao N (2014) Molecular scale origin of surface plasmon resonance biosensors. Anal Chem 86:8992–8997CrossRef
164.
go back to reference Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity. In: CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (NIST). CRC Press/Taylor and Francis Group: Boca Raton, FL. 2006. 2608 pp. ISBN 0-8493-0487-3. Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity. In: CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (NIST). CRC Press/Taylor and Francis Group: Boca Raton, FL. 2006. 2608 pp. ISBN 0-8493-0487-3.
165.
go back to reference Syal K, Wang W, Shan X, Wang S, Chen H-Y, Tao N (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137CrossRef Syal K, Wang W, Shan X, Wang S, Chen H-Y, Tao N (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137CrossRef
166.
go back to reference Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S et al (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–2884CrossRef Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S et al (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–2884CrossRef
Metadata
Title
Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions
Authors
Shavkat Nizamov
Vladimir M. Mirsky
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56322-9_3

Premium Partners