Skip to main content
Top
Published in: Microsystem Technologies 7/2018

17-03-2018 | Technical Paper

Wideband auto-tunable vibration energy harvester using change in centre of gravity

Authors: Rohit Somkuwar, Jaya Chandwani, Raghavendra Deshmukh

Published in: Microsystem Technologies | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy harvesters are preferred for enhancing the life of IoT nodes. In this paper, a vibration energy harvester with wideband auto-tunable resonant frequency for increased output is designed. With a variation in frequency of vibrating source, harvested energy reduces to zero value. To harvest the energy on regular basis from the vibrating source, tuning is required. This problem is resolved with the proposed design, which works on the principle of change in centre of gravity (CoG) of proof mass that leads to change the natural frequency of the device. The design is simulated and the static change in frequency with a change in CoG is analytically calculated. The simulated results are verified with fabricated device and similar outcome with boosted bandwidth is obtained. Frequency range is obtained between 22–35 Hz for fabricated device with \(\approx\) 6.0 V\(_{pp}\) voltage output for different positions of cylinders.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
go back to reference Boudaoud A, Couder Y, Ben Amar M (1999) A self-adaptative oscillator. Eur Phys J B 9(1):159–165CrossRef Boudaoud A, Couder Y, Ben Amar M (1999) A self-adaptative oscillator. Eur Phys J B 9(1):159–165CrossRef
go back to reference Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17(1):15035CrossRef Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17(1):15035CrossRef
go back to reference Cottone F, Basset P, Marty F, Galayko D, Gammaitoni L, Bourouina T (2014) Electrostatic generator with free micro-ball and elastic stoppers for low-frequency vibration harvesting. In: Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS), p 385388 Cottone F, Basset P, Marty F, Galayko D, Gammaitoni L, Bourouina T (2014) Electrostatic generator with free micro-ball and elastic stoppers for low-frequency vibration harvesting. In: Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS), p 385388
go back to reference Dielectric Constants of Common Materials (2018) Dielectric Constants of Common Materials (2018)
go back to reference Jackson N, Stam F, Olszewski OZ, Houlihan R, Mathewson A (2015) Broadening the bandwidth of piezoelectric energy harvesters using liquid filled mass. Proc Eng 120:328332CrossRef Jackson N, Stam F, Olszewski OZ, Houlihan R, Mathewson A (2015) Broadening the bandwidth of piezoelectric energy harvesters using liquid filled mass. Proc Eng 120:328332CrossRef
go back to reference Jia Y, Seshia AA (2016) Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J Microelectromech Syst 25(1):108117CrossRef Jia Y, Seshia AA (2016) Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J Microelectromech Syst 25(1):108117CrossRef
go back to reference Khalily F, Golnaraghi M, Heppler G (1994) On the dynamic behaviour of flexible beam carrying a moving mass. Nonlinear Dyn 5:493–513CrossRef Khalily F, Golnaraghi M, Heppler G (1994) On the dynamic behaviour of flexible beam carrying a moving mass. Nonlinear Dyn 5:493–513CrossRef
go back to reference Kozinsky I (2009) Study of passive self-tuning resonator for broadband power harvesting. In: PowerMEMS, pp 388–391 Kozinsky I (2009) Study of passive self-tuning resonator for broadband power harvesting. In: PowerMEMS, pp 388–391
go back to reference Kulah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. Sens J IEEE 8(3):261268CrossRef Kulah H, Najafi K (2008) Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. Sens J IEEE 8(3):261268CrossRef
go back to reference Li M, Wen Y, Li P, Yang J (2011) A magnetostrictive/piezoelectric laminate transducer based vibration energy harvester with resonance frequency tunability. Proc IEEE Sens 50830202:17681771 Li M, Wen Y, Li P, Yang J (2011) A magnetostrictive/piezoelectric laminate transducer based vibration energy harvester with resonance frequency tunability. Proc IEEE Sens 50830202:17681771
go back to reference Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phys Rev 1(4):041301CrossRef Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phys Rev 1(4):041301CrossRef
go back to reference Madinei H, Khodaparast HH, Adhikari S, Friswell MI (2016) Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency. Mech Syst Signal Process 81:360374CrossRef Madinei H, Khodaparast HH, Adhikari S, Friswell MI (2016) Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency. Mech Syst Signal Process 81:360374CrossRef
go back to reference Miller LM (2012) Micro-scale piezoelectric vibration energy harvesting: from fixed-frequency to adaptable-frequency devices. Ph.D. thesis, University of California, Berkeley Miller LM (2012) Micro-scale piezoelectric vibration energy harvesting: from fixed-frequency to adaptable-frequency devices. Ph.D. thesis, University of California, Berkeley
go back to reference Miller LM, Pillatsch P, Halvorsen E, Wright PK, Yeatman EM, Holmes AS (2013) Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. J Sound Vib 332(26):7142–7152CrossRef Miller LM, Pillatsch P, Halvorsen E, Wright PK, Yeatman EM, Holmes AS (2013) Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. J Sound Vib 332(26):7142–7152CrossRef
go back to reference Ooi BL, Gilbert JM, Aziz ARA (2016) Frequency-tunable electromagnetic energy harvester by means of damping switching. In: Proceedings of the 2015 international conference on automation, cognitive science, optics, micro electro-mechanical system, and information technology, ICACOMIT 2015, p 201206 Ooi BL, Gilbert JM, Aziz ARA (2016) Frequency-tunable electromagnetic energy harvester by means of damping switching. In: Proceedings of the 2015 international conference on automation, cognitive science, optics, micro electro-mechanical system, and information technology, ICACOMIT 2015, p 201206
go back to reference Roylance LM, Angell JB (1979) A batch-fabricated silicon accelerometer. IEEE Trans Electron Devices 26(12):19111917CrossRef Roylance LM, Angell JB (1979) A batch-fabricated silicon accelerometer. IEEE Trans Electron Devices 26(12):19111917CrossRef
go back to reference Saadon S, Sidek O (2015) Micro-electro-mechanical system (MEMS)-based piezoelectric energy harvester for ambient vibrations. Proc Soc Behav Sci 195:23532362CrossRef Saadon S, Sidek O (2015) Micro-electro-mechanical system (MEMS)-based piezoelectric energy harvester for ambient vibrations. Proc Soc Behav Sci 195:23532362CrossRef
go back to reference Schaufuss J, Scheibner D, Mehner J (2011) New approach of frequency tuning for kinetic energy harvesters. Sens Actuators A Phys 171(2):352360CrossRef Schaufuss J, Scheibner D, Mehner J (2011) New approach of frequency tuning for kinetic energy harvesters. Sens Actuators A Phys 171(2):352360CrossRef
go back to reference Thomsen JJ (1996) Vibration suppression by using self-arranging mass: effects of adding restoring force. J Sound Vib 197(4):403425CrossRef Thomsen JJ (1996) Vibration suppression by using self-arranging mass: effects of adding restoring force. J Sound Vib 197(4):403425CrossRef
go back to reference Wu X, Lin J, Kato S, Zhang K, Ren T, Liu L (2008) A frequency adjustable vibration energy harvester. In: Proceedings of PowerMEMS 2008+ microEMS2008, p 245248 Wu X, Lin J, Kato S, Zhang K, Ren T, Liu L (2008) A frequency adjustable vibration energy harvester. In: Proceedings of PowerMEMS 2008+ microEMS2008, p 245248
go back to reference Zhu D, Tudor J, Beeby SSP, Tudor MJ, Beeby SSP (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21(2):22001CrossRef Zhu D, Tudor J, Beeby SSP, Tudor MJ, Beeby SSP (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21(2):22001CrossRef
go back to reference Zhu D, Roberts S, Tudor J, Beeby S (2008) Closed loop frequency tuning of a vibration-based micro-generator. In: PowerMEMS, p 25 Zhu D, Roberts S, Tudor J, Beeby S (2008) Closed loop frequency tuning of a vibration-based micro-generator. In: PowerMEMS, p 25
Metadata
Title
Wideband auto-tunable vibration energy harvester using change in centre of gravity
Authors
Rohit Somkuwar
Jaya Chandwani
Raghavendra Deshmukh
Publication date
17-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 7/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3846-x

Other articles of this Issue 7/2018

Microsystem Technologies 7/2018 Go to the issue