skip to main content
research-article

CofiFab: coarse-to-fine fabrication of large 3D objects

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

This paper presents CofiFab, a coarse-to-fine 3D fabrication solution, combining 3D printing and 2D laser cutting for cost-effective fabrication of large objects at lower cost and higher speed. Our key approach is to first build coarse internal base structures within the given 3D object using laser cutting, and then attach thin 3D-printed parts, as an external shell, onto the base to recover the fine surface details. CofiFab achieves this with three novel algorithmic components. First, we formulate an optimization model to compute fabricatable polyhedrons of maximized volume, as the geometry of the internal base. Second, we devise a new interlocking scheme to tightly connect the laser-cut parts into a strong internal base, by iteratively building a network of nonorthogonal joints and interlocking parts around polyhedral corners. Lastly, we optimize the partitioning of the external object shell into 3D-printable parts, while saving support material and avoiding overhangs. Besides cost saving, these components also consider aesthetics, stability and balancing. Hence, CofiFab can efficiently produce large objects by assembly. To evaluate CofiFab, we fabricate objects of varying shapes and sizes, and show that CofiFab can significantly outperform previous methods.

Skip Supplemental Material Section

Supplemental Material

a45.mp4

mp4

375.5 MB

References

  1. Alemanno, G., Cignoni, P., Pietroni, N., Ponchio, F., and Scopigno, R. 2014. Interlocking pieces for printing tangible cultural heritage replicas. In Eurographics Workshop on Graphics and Cultural Heritage, 145--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexandrov, A. D. 2005. Convex Polyhedra. Springer.Google ScholarGoogle Scholar
  3. Beyer, D., Gurevich, S., Mueller, S., Chen, H.-T., and Baudisch, P. 2015. Platener: Low-fidelity fabrication of 3D objects by substituting 3D print with laser-cut plates. CHI '15, 1799--1806. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Borgefors, G., and Strand, R. 2005. An approximation of the maximal inscribed convex set of a digital object. In Image Analysis and Processing - ICIAP 2005. 438--445. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cabello, S., Cibulka, J., Kynčl, J., Saumell, M., and Valtr, P. 2014. Peeling potatoes near-optimally in near-linear time. SOCG'14, 224:224--224:231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chang, J. S., and Yap, C. K. 1986. A polynomial solution for the potato-peeling problem. Discrete & Comp. Geom. 1, 2, 155--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, L., and Sass, L. 2015. Fresh Press Modeler: A generative system for physically based low fidelity prototyping. Computers & Graphics 54, 157--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, D., Sitthi-amorn, P., Lan, J. T., and Matusik, W. 2013. Computing and fabricating multiplanar models. Computer Graphics Forum 32, 2, 305--315.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chen, X., Zhang, H., Lin, J., Hu, R., Lu, L., Huang, Q., Benes, B., Cohen-Or, D., and Chen, B. 2015. Dapper: Decompose-and-pack for 3D printing. ACM Trans. Graph. 34, 6, 213:1--213:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1, 11:1--11:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 3, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Craftsmansapce, 2015. Woodworking joints. http://www.craftsmanspace.com/knowledge/woodworking-joints.html.Google ScholarGoogle Scholar
  13. Deits, R., and Tedrake, R. 2015. Computing large convex regions of obstacle-free space through semidefinite programming. In Algorithmic Foundations of Robotics XI. 109--124.Google ScholarGoogle Scholar
  14. Fu, C.-W., Song, P., Yan, X., Yang, L. W., Jayaraman, P. K., and Cohen-Or, D. 2015. Computational interlocking furniture assembly. ACM Trans. Graph. 34, 4, 91:1--91:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gao, W., Zhang, Y., Nazzetta, D. C., Ramani, K., and Cipra, R. J. 2015. RevoMaker: Enabling multi-directional and functionally-embedded 3D printing using a rotational cuboidal platform. UIST '15, 437--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gershenfeld, N. 2007. Fab: The Coming Revolution on Your Desktop--from Personal Computers to Personal Fabrication. Basic Books, Inc., New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Goodman, J. E. 1981. On the largest convex polygon contained in a non-convex n-gon, or how to peel a potato. Geometriae Dedicata 11, 1, 99--106.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hao, J., Fang, L., and Williams, R. E. 2011. An efficient curvature-based partitioning of large-scale STL models. Rapid Prototyping Journal 17, 2, 116--127.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: Shape fabrication by sliding planar slices. Computer Graphics Forum 31, 2, 583--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hornus, S., Lefebvre, S., Dumas, J., and Claux, F. 2015. Tight printable enclosures for additive manufacturing. Tech. rep., Inria. RR-8712.Google ScholarGoogle Scholar
  21. Hu, R., Li, H., Zhang, H., and Cohen-Or, D. 2014. Approximate pyramidal shape decomposition. ACM Trans. Graph. 33, 6, 213:1--213:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lien, J.-M., and Amato, N. M. 2008. Approximate convex decomposition of polyhedra and its applications. Comput. Aided Geom. Des. 25, 7, 503--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph. 33, 4, 97:1--97:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM Trans. Graph. 31, 6, 129:1--129:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: A shape-proxy based on planar sections. ACM Trans. Graph. 30, 6, 168:1--168:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Medellín, H., Lim, T., Corney, J., Ritchie, J. M., and Davies, J. B. C. 2007. Automatic subdivision and refinement of large components for rapid prototyping production. J. Comput. Inf. Sci. Eng. 7, 3, 249--258.Google ScholarGoogle ScholarCross RefCross Ref
  27. Mueller, S., Mohr, T., Guenther, K., Frohnhofen, J., and Baudisch, P. 2014. faBrickation: Fast 3D printing of functional objects by integrating construction kit building blocks. CHI '14, 3827--3834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4, 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Computer Graphics Forum 32, 2, 317--326.Google ScholarGoogle ScholarCross RefCross Ref
  30. Song, P., Fu, C.-W., and Cohen-Or, D. 2012. Recursive interlocking puzzles. ACM Trans. Graph. 31, 6, 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Song, P., Fu, Z., Liu, L., and Fu, C.-W. 2015. Printing 3D objects with interlocking parts. CAGD 35--36, 137--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4, 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Vanek, J., Galicia, J. A. G., Benes, B., Měch, R., Carr, N., Stava, O., and Miller, G. S. 2014. PackMerger: A 3D print volume optimizer. Computer Graphics Forum 33, 6, 322--332.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wächter, A., and Biegler, L. T. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 1, 25--57.Google ScholarGoogle ScholarCross RefCross Ref
  35. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32, 6, 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yao, M., Chen, Z., Luo, L., Wang, R., and Wang, H. 2015. Level-set-based partitioning and packing optimization of a printable model. ACM Trans. Graph. 34, 6, 214:1--214:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhang, X., Xia, Y., Wang, J., Yang, Z., Tu, C., and Wang, W. 2015. Medial axis tree-an internal supporting structure for 3D printing. Comput. Aided Geom. Des. 35--36, 149--162. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. CofiFab: coarse-to-fine fabrication of large 3D objects

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader