skip to main content
research-article

Optimizing locomotion controllers using biologically-based actuators and objectives

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a technique for automatically synthesizing walking and running controllers for physically-simulated 3D humanoid characters. The sagittal hip, knee, and ankle degrees-of-freedom are actuated using a set of eight Hill-type musculotendon models in each leg, with biologically-motivated control laws. The parameters of these control laws are set by an optimization procedure that satisfies a number of locomotion task terms while minimizing a biological model of metabolic energy expenditure. We show that the use of biologically-based actuators and objectives measurably increases the realism of gaits generated by locomotion controllers that operate without the use of motion capture data, and that metabolic energy expenditure provides a simple and unifying measurement of effort that can be used for both walking and running control optimization.

Skip Supplemental Material Section

Supplemental Material

tp104_12.mp4

mp4

27 MB

References

  1. Ackermann, M., and van den Bogert, A. J. 2010. Optimality principles for model-based prediction of human gait. Journal of Biomechanics 43, 6, 1055--1060.Google ScholarGoogle ScholarCross RefCross Ref
  2. Alexander, R. M. 2003. Principles of Animal Locomotion. Princeton University Press.Google ScholarGoogle Scholar
  3. Anderson, F. C., and Pandy, M. G. 2001. Dynamic optimization of human walking. Journal of Biomechanical Engineering 123, 5, 381--390.Google ScholarGoogle ScholarCross RefCross Ref
  4. Anderson, F. C. 1999. A dynamic optimization solution for a complete cycle of normal gait. PhD thesis, University of Texas at Austin.Google ScholarGoogle Scholar
  5. Bhargava, L. J., Pandy, M. G., and Anderson, F. C. 2004. A phenomenological model for estimating metabolic energy consumption in muscle contraction. Journal of Biomechanics 37, 81--88.Google ScholarGoogle ScholarCross RefCross Ref
  6. Blickhan, R. 1989. The spring-mass model for running and hopping. Journal of Biomechanics 22, 1217--1227.Google ScholarGoogle ScholarCross RefCross Ref
  7. Collins, S., Ruina, A., Tedrake, R., and Wisse, M. 2005. Efficient bipedal robots based on passive-dynamic walkers. Science 307, 5712, 1082--1085.Google ScholarGoogle Scholar
  8. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Transactions on Graphics 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Transactions on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-based locomotion controllers. ACM Transactions on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Full, R. J., and Koditschek, D. E. 1999. Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. The Journal of Experimental Biology 202, 23, 3325--3332.Google ScholarGoogle Scholar
  14. Geyer, H., and Herr, H. 2010. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18, 3, 263--273.Google ScholarGoogle ScholarCross RefCross Ref
  15. Geyer, H., Seyfarth, A., and Blickhan, R. 2003. Positive force feedback in bouncing gaits? Proceedings of the Royal Society B 270, 2173--2183.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hamner, S. R., Seth, A., and Delp, S. L. 2010. Muscle contributions to propulsion and support during running. Journal of Biomechanics 43, 2709--2716.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hansen, N. 2006. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation. Springer, 75--102.Google ScholarGoogle Scholar
  18. Hase, K., Miyashita, K., Ok, S., and Arakawa, Y. 2003. Human gait simulation with a neuromusculoskeletal model and evolutionary computation. Journal of Visualization and Computer Animation 14, 2, 73--92.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jain, S., and Liu, C. K. 2011. Controlling physics-based characters using soft contacts. ACM Transactions on Graphics 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Transactions on Graphics 28, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kay, R. M., Rethiefsen, S. A., Skaggs, D., and Leet, A. 2002. Outcome of medial versus combined medial and lateral hamstring lengthening surgery in cerebral palsy. Journal of Pediatric Orthopaedics 22, 2, 169--172.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kuo, A. D. 2001. A simple model of bipedal walking predicts the preferred speed-step length relationship. Journal of Biomechanical Engineering 123, 3, 264--269.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kwon, T., and Hodgins, J. 2010. Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In Proc. Symposium on Computer Animation, ACM SIGGRAPH/Eurographics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Laszlo, J. F., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: Biomechanical modeling and neuromuscular control of the neck. ACM Transactions on Graphics 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lee, Y., Terzopoulos, D., and Waters, K. 1995. Realistic modeling for facial animation. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Transactions on Graphics 28, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Transactions on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Liu, M. Q., Anderson, F. C., Schwartz, M. H., and Delp, S. L. 2008. Muscle contributions to support and progression over a range of walking speeds. Journal of Biomechanics 41, 3243--3252.Google ScholarGoogle ScholarCross RefCross Ref
  32. Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust physics-based locomotion using low-dimensional planning. ACM Transactions on Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Murai, A., and Yamane, K. 2011. A neuromuscular locomotion controller that realizes human-like responses to unexpected disturbances. In Proc. International Conference on Robotics and Automation, IEEE, 1997--2002.Google ScholarGoogle Scholar
  35. Novacheck, T. F. 1998. The biomechanics of running. Gait and Posture 7, 1, 77--95.Google ScholarGoogle ScholarCross RefCross Ref
  36. Perry, J., and Burnfield, J. 2010. Gait Analysis: Normal and Pathological Function. Slack Incorporated.Google ScholarGoogle Scholar
  37. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Schultz, G., and Mombaur, K. 2010. Modeling and optimal control of human-like running. IEEE/ASME Transactions on Mechatronics 15, 5, 783--791.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sherman, M., Seth, A., and Delp, S. L. 2011. Simbody: Multibody dynamics for biomedical research. In Proc. Symposium on Human Body Dynamics, Vol. 2, IUTAM, 241--261.Google ScholarGoogle Scholar
  40. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Transactions on Graphics 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Smith, R., 2006. Open Dynamics Engine v0.5 User Guide. http://www.ode.org/ode-latest-userguide.html, Feb.Google ScholarGoogle Scholar
  42. Srinivasan, M., and Ruina, A. 2006. Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72--75.Google ScholarGoogle ScholarCross RefCross Ref
  43. Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. S., and Delp, S. L. 2010. Muscle contributions to support and progression during single-limb stance in crouch gait. Journal of Biomechanics 43, 2099--2105.Google ScholarGoogle ScholarCross RefCross Ref
  44. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Transactions on Graphics 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Taga, G. 1995. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biological Cybernetics 73, 2, 97--111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Timoney, J. M., Inman, W. S., Quesada, P. M., Sharkey, P. F., Barrack, R. L., Skinner, H. B., and Alexander, A. H. 1993. Return of normal gait patterns after anterior cruciate ligament reconstruction. The American Journal of Sports Medicine 21, 6, 887--889.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Transactions on Graphics 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2010. Optimizing walking controllers for uncertain inputs and environments. ACM Transactions on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Waters, K. 1987. A muscle model for animation three-dimensional facial expression. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Weinstein, R., Guendelman, E., and Fedkiw, R. 2008. Impulse-based control of joints and muscles. IEEE Transactions on Visualization and Computer Graphics 14, 1, 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wu, J.-c., and Popović, Z. 2010. Terrain-adaptive bipedal locomotion control. ACM Transactions on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Ye, Y., and Liu, C. K. 2010. Optimal feedback control for character animation using an abstract model. ACM Transactions on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Transactions on Graphics 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yokozawa, T., Fujii, N., and Ae, M. 2007. Muscle activities of the lower limb during level and uphill running. Journal of Biomechanics 40, 15, 3467--3475.Google ScholarGoogle ScholarCross RefCross Ref
  55. Zajac, F. E. 1989. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 17, 4, 359--411.Google ScholarGoogle Scholar
  56. Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C. 2006. Breathe easy: Model and control of human respiration for computer animation. Graphical Models 68, 2, 113--132. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optimizing locomotion controllers using biologically-based actuators and objectives

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader