Skip to main content
Top
Published in: Progress in Additive Manufacturing 3/2019

04-02-2019 | Review Article

3D-printing and advanced manufacturing for electronics

Authors: Alejandro H. Espera Jr., John Ryan C. Dizon, Qiyi Chen, Rigoberto C. Advincula

Published in: Progress in Additive Manufacturing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Printed electronics currently holds a significant share in the electronics fabrication market due to advantages in high-throughput production and customizability in terms of material support and system process. The printing of traces and interconnects, passive and active components such as resistors, capacitors, inductors, and application-specific electronic devices, have been a growing focus of research in the area of additive manufacturing. Adaptation of new 3D-printing technologies and manufacturing methods, specifically for printed electronics, are potentially transformative in flexible electronics, wireless communications, efficient batteries, solid-state display technologies, etc. Other than printing new and reactive functional electronic materials, the functionalization of the printing substrates with unusual geometries apart from the conventional planar circuit boards will be a challenge. Building the substrate, printing the conductive tracks, pick-and-placing or embedding the electronic components, and interconnecting them, are fundamental fabrication protocols new 3D-printing systems should adopt for a more integrated fabrication. Moreover, designers and manufacturers of such systems will play an important role in scaling 3D-printed electronics from prototyping to high-throughput mass production. This review gives a groundwork for such understanding, defining methods and protocols, reviewing various 3D-printing methods, and describing the state-of-the-art in 3D-printed electronics and their future growth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Cook B, Tehrani B, Cooper J, Kim S, Tentzeris M (2015) Integrated printing for 2D/3D flexible organic electronic devices. Handbook of flexible organic electronics. Woodhead Publishing, Cambridge, pp 199–216 Cook B, Tehrani B, Cooper J, Kim S, Tentzeris M (2015) Integrated printing for 2D/3D flexible organic electronic devices. Handbook of flexible organic electronics. Woodhead Publishing, Cambridge, pp 199–216
4.
go back to reference Weiderrecht G (2009) Handbook of nanofabrication. Elsevier, New York Weiderrecht G (2009) Handbook of nanofabrication. Elsevier, New York
5.
go back to reference Mosses R, Brackenridge S (2003) A novel process for the manufacturing of advanced interconnects. Circuit World 29(3):18–21CrossRef Mosses R, Brackenridge S (2003) A novel process for the manufacturing of advanced interconnects. Circuit World 29(3):18–21CrossRef
6.
go back to reference Zhao D, Liu T, Lin Z, Zhang M, Liang R, Wang B (2012) Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures. Smart Mater Struct 21(11):115008CrossRef Zhao D, Liu T, Lin Z, Zhang M, Liang R, Wang B (2012) Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures. Smart Mater Struct 21(11):115008CrossRef
7.
go back to reference Lu B, Li D, Tian X (2015) Development trends in additive manufacturing and 3D printing. Engineering 1:85–89,CrossRef Lu B, Li D, Tian X (2015) Development trends in additive manufacturing and 3D printing. Engineering 1:85–89,CrossRef
8.
go back to reference Shirasaki Y, Supran G, Bawendi M, Bulović V (2012) Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7:13–23CrossRef Shirasaki Y, Supran G, Bawendi M, Bulović V (2012) Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7:13–23CrossRef
9.
go back to reference Dizon J, Espera A, Chen Q, Advincula R (2017) Mechanical characterization of 3D-printed polymers. Additive Manuf 20:44–67CrossRef Dizon J, Espera A, Chen Q, Advincula R (2017) Mechanical characterization of 3D-printed polymers. Additive Manuf 20:44–67CrossRef
10.
go back to reference Macdonald E, Salas R, Espalin D, Perez M, Aguilera E, Muse D, Wicker R (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242CrossRef Macdonald E, Salas R, Espalin D, Perez M, Aguilera E, Muse D, Wicker R (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242CrossRef
11.
go back to reference Macdonald E (2012) Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping J Macdonald E (2012) Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping J
12.
go back to reference Ahn B, Duoss E, Motala M, Guo X, Park S-I, Xiong Y, Yoon J, Nuzzo R, Rogers J, Lewis J (2009) Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science 323(5921):1590–1593CrossRef Ahn B, Duoss E, Motala M, Guo X, Park S-I, Xiong Y, Yoon J, Nuzzo R, Rogers J, Lewis J (2009) Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science 323(5921):1590–1593CrossRef
13.
go back to reference Lewis J, Ahn B (2015) Three-dimensional printed electronics. Nature 518:42–43CrossRef Lewis J, Ahn B (2015) Three-dimensional printed electronics. Nature 518:42–43CrossRef
18.
go back to reference Gibson I, Rosen D, Stucker B (2009) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer, Berlin Gibson I, Rosen D, Stucker B (2009) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer, Berlin
20.
go back to reference Kunnari E, Valkama J, Keskinen M, Mansikkamaki P (2009) Environmental evaluation of new technology: printed electronics case study. J Cleaner Prod 17:791–799CrossRef Kunnari E, Valkama J, Keskinen M, Mansikkamaki P (2009) Environmental evaluation of new technology: printed electronics case study. J Cleaner Prod 17:791–799CrossRef
21.
go back to reference Kipphan H (2011) Handbook of print media. Springer, Germany Kipphan H (2011) Handbook of print media. Springer, Germany
22.
go back to reference Océ D (2006) Printing, 10th ed. Océ Printing Systems GmbH, Poing Océ D (2006) Printing, 10th ed. Océ Printing Systems GmbH, Poing
23.
go back to reference Sekitani T, Noguchi Y, Zschieschang U, Klauk H, Someya T (2008) Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc Natl Acad Sci 105(13):4976–4980CrossRef Sekitani T, Noguchi Y, Zschieschang U, Klauk H, Someya T (2008) Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc Natl Acad Sci 105(13):4976–4980CrossRef
24.
go back to reference Sridhar A, Blaudeck T, Baumann R (2011) Inkjet printing as a key enabling technology for printed electronics. Mater Matters 6(1):12–15 Sridhar A, Blaudeck T, Baumann R (2011) Inkjet printing as a key enabling technology for printed electronics. Mater Matters 6(1):12–15
25.
go back to reference Wood V, Panzer M, Chen J, Bradley M, Halpert J, Bawendi M, Bulovic V (2009) Inkjet-printed quantum dot–polymer composites for full-color AC-driven displays. Adv Mater 21(21):1–5 Wood V, Panzer M, Chen J, Bradley M, Halpert J, Bawendi M, Bulovic V (2009) Inkjet-printed quantum dot–polymer composites for full-color AC-driven displays. Adv Mater 21(21):1–5
26.
go back to reference Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414CrossRef Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414CrossRef
28.
go back to reference Grimm T (2004) User’s guide to rapid prototyping. Society of Manufacturing Engineers, Dearborn Grimm T (2004) User’s guide to rapid prototyping. Society of Manufacturing Engineers, Dearborn
29.
go back to reference Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330, 11 March 1986 Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330, 11 March 1986
30.
go back to reference Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130CrossRef Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130CrossRef
31.
go back to reference Waterman N, Dickens P (1994) Rapid product development in the USA, Europe and Japan. World Class Design Manuf 1(3):27–36CrossRef Waterman N, Dickens P (1994) Rapid product development in the USA, Europe and Japan. World Class Design Manuf 1(3):27–36CrossRef
32.
go back to reference Pham D, Gault R (1998) “A comparison of rapid prototyping technologies”. Int J Mach Tools Manuf 38:1257–1287CrossRef Pham D, Gault R (1998) “A comparison of rapid prototyping technologies”. Int J Mach Tools Manuf 38:1257–1287CrossRef
33.
go back to reference Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world? Atlantic Council, Washington Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world? Atlantic Council, Washington
34.
go back to reference Kazmer D (2001) Three-dimensional printing of plastics. In: Applied plastics engineering handbook—processing, materials, and applications, a volume in plastic design library, Elsevier, New York, pp 617–634 Kazmer D (2001) Three-dimensional printing of plastics. In: Applied plastics engineering handbook—processing, materials, and applications, a volume in plastic design library, Elsevier, New York, pp 617–634
35.
go back to reference Sachs E, Cima M, Cornie J (1990) Three dimensional printing: rapid tooling and prototypes directly from CAD representation. CIRP Annals Manuf Technol 39(1):201–204CrossRef Sachs E, Cima M, Cornie J (1990) Three dimensional printing: rapid tooling and prototypes directly from CAD representation. CIRP Annals Manuf Technol 39(1):201–204CrossRef
36.
go back to reference Mota C, Puppi D, Dinucci D, Gazzarri M, CHielleni F (2013) Additive manufacturing of star poly(ε-caprolactone) wetspun scaffolds for bone tissue engineering applications. J Bioact Compatib Polym 28(4):320–340CrossRef Mota C, Puppi D, Dinucci D, Gazzarri M, CHielleni F (2013) Additive manufacturing of star poly(ε-caprolactone) wetspun scaffolds for bone tissue engineering applications. J Bioact Compatib Polym 28(4):320–340CrossRef
37.
go back to reference Lewis J (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204CrossRef Lewis J (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204CrossRef
38.
go back to reference de Leon A, Chen Q, Palaganas N, Palaganas J, Manapat J, Advincula R (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155CrossRef de Leon A, Chen Q, Palaganas N, Palaganas J, Manapat J, Advincula R (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155CrossRef
39.
go back to reference Mortara L, Hughes J, Ramsundar PLF, Probert D (2009) Proposed classification scheme for direct wire technologies. Rapid Prototyping J 15(4):299–309CrossRef Mortara L, Hughes J, Ramsundar PLF, Probert D (2009) Proposed classification scheme for direct wire technologies. Rapid Prototyping J 15(4):299–309CrossRef
40.
go back to reference Hon K, Li L, Hutchings I (2008) Direct writing technology—advances and developments. CIRP Ann Manuf Technol 57(2):601–620CrossRef Hon K, Li L, Hutchings I (2008) Direct writing technology—advances and developments. CIRP Ann Manuf Technol 57(2):601–620CrossRef
41.
go back to reference Perez K, Williams C (2013) Combining additive manufacturing and direct wire for integrated electronics—a review. In: 24th International solid freeform fabrication symposium—an additive manufacturing conference, Texas Perez K, Williams C (2013) Combining additive manufacturing and direct wire for integrated electronics—a review. In: 24th International solid freeform fabrication symposium—an additive manufacturing conference, Texas
42.
go back to reference Hoerber J, Glasschroeder J, Pfeffer M, Schilp J, Zaeh M, Franke J (2014) Approaches for additive manufacturing of 3D electronic applications. Proc CIRP 17:806–811CrossRef Hoerber J, Glasschroeder J, Pfeffer M, Schilp J, Zaeh M, Franke J (2014) Approaches for additive manufacturing of 3D electronic applications. Proc CIRP 17:806–811CrossRef
43.
go back to reference Robinson CJ, Stucker B, Lopes AJ, Wicker R, Palmer JA (2006) Integration of direct-write (DW) and ultrasonic consolidation (UC) technologies to create advanced structures with embedded electrical circuitry. In: 17th solid freeform fabrication symposium, Texas Robinson CJ, Stucker B, Lopes AJ, Wicker R, Palmer JA (2006) Integration of direct-write (DW) and ultrasonic consolidation (UC) technologies to create advanced structures with embedded electrical circuitry. In: 17th solid freeform fabrication symposium, Texas
44.
go back to reference Medina F, Lopes A, Inamdar A, Hennessey R, Palmer J, Chavez B, Davis D, Gallegos P, Wicker R (2005) Hybrid manufacturing: integrating direct write and stereolithography. In: Solid freeform fabrication symposium proceedings, Austin, TX Medina F, Lopes A, Inamdar A, Hennessey R, Palmer J, Chavez B, Davis D, Gallegos P, Wicker R (2005) Hybrid manufacturing: integrating direct write and stereolithography. In: Solid freeform fabrication symposium proceedings, Austin, TX
45.
go back to reference Janaki Ram G, Yang Y, George J, Robinson C, Stucker B (2006) Improving Linear Weld Density in Ultrasonically Consolidated Parts. In: Solid freeform fabrication symposium proceedings, Austin, TX Janaki Ram G, Yang Y, George J, Robinson C, Stucker B (2006) Improving Linear Weld Density in Ultrasonically Consolidated Parts. In: Solid freeform fabrication symposium proceedings, Austin, TX
46.
go back to reference Masurtschak S, Friel R, Gillner A, Ryll J, Harris R (2014) Laser-machined microchannel effect on microstructure and oxide formation of an ultrasonically processed aluminum alloy. J Eng Mater Technol 137(1):011006CrossRef Masurtschak S, Friel R, Gillner A, Ryll J, Harris R (2014) Laser-machined microchannel effect on microstructure and oxide formation of an ultrasonically processed aluminum alloy. J Eng Mater Technol 137(1):011006CrossRef
48.
go back to reference Manapat J, Chen Q, Ye P, Advincula R (2017) 3D printing of polymer nanocomposites via stereolithography. Macromol Mater Eng 302:1600553CrossRef Manapat J, Chen Q, Ye P, Advincula R (2017) 3D printing of polymer nanocomposites via stereolithography. Macromol Mater Eng 302:1600553CrossRef
50.
go back to reference Gebhardt A (2007) Generative manufacturing processes, rapid prototyping–rapid tooling–rapid manufacturing. Carl Hanser, Munich Gebhardt A (2007) Generative manufacturing processes, rapid prototyping–rapid tooling–rapid manufacturing. Carl Hanser, Munich
51.
go back to reference Zaeh M, Glasschroeder J, Krol T, Schilp J (2011) Innovative solutions for increasing the quality of components at additive manufacturing. Utz, Munich Zaeh M, Glasschroeder J, Krol T, Schilp J (2011) Innovative solutions for increasing the quality of components at additive manufacturing. Utz, Munich
52.
go back to reference Gibbson I, Rosen D, Stucker B (2010) Additive manufacturing technologies, rapid prototyping to direct digital manufacturing. Springer, New York Gibbson I, Rosen D, Stucker B (2010) Additive manufacturing technologies, rapid prototyping to direct digital manufacturing. Springer, New York
53.
go back to reference Lee D, Oh J (2010) Inkjet printing of conductive Ag lines and their electrical and mechanical characterization. Thin Solid Films 518(22):6352–6356CrossRef Lee D, Oh J (2010) Inkjet printing of conductive Ag lines and their electrical and mechanical characterization. Thin Solid Films 518(22):6352–6356CrossRef
54.
go back to reference Hedges M (2010) 3D aerosol jet printing—an emerging mid manufacturing. In: 9th International congress molded interconnect devices, Fuerth Hedges M (2010) 3D aerosol jet printing—an emerging mid manufacturing. In: 9th International congress molded interconnect devices, Fuerth
56.
go back to reference Krebs T (2010) Flexible circuits or printed circuit boards? Technology selection based on virtual prototypes. In: 9th International congress molded interconnect devices, Fuerth Krebs T (2010) Flexible circuits or printed circuit boards? Technology selection based on virtual prototypes. In: 9th International congress molded interconnect devices, Fuerth
57.
go back to reference Frank J, Feldmann K, Fischer C (2009) Two approaches for the design of modeled interconnect devices (3D-MID). In: Proceedings 6th international conference on digital enterprise technology, Hongkong Frank J, Feldmann K, Fischer C (2009) Two approaches for the design of modeled interconnect devices (3D-MID). In: Proceedings 6th international conference on digital enterprise technology, Hongkong
58.
go back to reference Falat T, Platek B, Felba J (2012) Sintering process of silver nanoparticles in ink-jet printed conductive microstructures—molecular dynamics approach. In: 13th International conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems Falat T, Platek B, Felba J (2012) Sintering process of silver nanoparticles in ink-jet printed conductive microstructures—molecular dynamics approach. In: 13th International conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems
59.
go back to reference Allen M (2011) Nanoparticle sintering methods and applications for printed electronics. In: Aalto University publication series, Helsinki Allen M (2011) Nanoparticle sintering methods and applications for printed electronics. In: Aalto University publication series, Helsinki
60.
go back to reference Frank J (2013) Molded interconnect devices 3D-MID: materials, manufacturing, assembly and applications for molded circuit carriers. Carl Hanser, Munich Frank J (2013) Molded interconnect devices 3D-MID: materials, manufacturing, assembly and applications for molded circuit carriers. Carl Hanser, Munich
61.
go back to reference Pfeffer M, Goth C, Craiovan D, Frank J (2011) 3D-Assembly of molded interconnect devices with standard smd pick & place machines using an active multi axis workpiece carrier. In: International symposium on assembly and manufacturing, IEEE, Tampere Pfeffer M, Goth C, Craiovan D, Frank J (2011) 3D-Assembly of molded interconnect devices with standard smd pick & place machines using an active multi axis workpiece carrier. In: International symposium on assembly and manufacturing, IEEE, Tampere
62.
go back to reference Miettinen J, Pekkanen V, Kaija K, Mansikkamaki P, Mantysalo J, Mantysalo M (2008) Inkjet printed system-in-package design and manufacturing. Microelectron J 39(12):1740–1750CrossRef Miettinen J, Pekkanen V, Kaija K, Mansikkamaki P, Mantysalo J, Mantysalo M (2008) Inkjet printed system-in-package design and manufacturing. Microelectron J 39(12):1740–1750CrossRef
63.
go back to reference editor OEA (2011) A roadmap for organic and printed electronics. Whitepaper-OE, Frankfurt editor OEA (2011) A roadmap for organic and printed electronics. Whitepaper-OE, Frankfurt
64.
go back to reference Tseng H, Subramanian V (2011) All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org Electron 12(2):249–256CrossRef Tseng H, Subramanian V (2011) All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org Electron 12(2):249–256CrossRef
65.
go back to reference Kim D, Lee S, Jeong S, Moon J (2009) All-ink-jet printed flexible organic thin-film transistors on plastic substrates. Electrochem Solid State Lett 12:H195-H197 Kim D, Lee S, Jeong S, Moon J (2009) All-ink-jet printed flexible organic thin-film transistors on plastic substrates. Electrochem Solid State Lett 12:H195-H197
66.
go back to reference Saengchairat N, Tran T, Chua C (2017) A review: additive manufacturing for active electronic components. Virtual Phys Prototyp 12:31–46CrossRef Saengchairat N, Tran T, Chua C (2017) A review: additive manufacturing for active electronic components. Virtual Phys Prototyp 12:31–46CrossRef
67.
go back to reference Tan H, Tran T, Chua C (2016) A review of printed passive electronic components through fully additive manufacturing methods. Virtual Phys Prototyp 11:271–288CrossRef Tan H, Tran T, Chua C (2016) A review of printed passive electronic components through fully additive manufacturing methods. Virtual Phys Prototyp 11:271–288CrossRef
68.
go back to reference Ready S, Arias A, Sambandan S (2009) Ink jet printing devices and circuits. In: Materials research society fall meeting, Boston, MA Ready S, Arias A, Sambandan S (2009) Ink jet printing devices and circuits. In: Materials research society fall meeting, Boston, MA
69.
go back to reference Ready S, Wong W, Arias A, Apte R, CHabynic M, Street R, Salleo A (2006) Toolset for printed electronics. In: International conference on digital fabrication technologies, Denver, CO Ready S, Wong W, Arias A, Apte R, CHabynic M, Street R, Salleo A (2006) Toolset for printed electronics. In: International conference on digital fabrication technologies, Denver, CO
70.
go back to reference Ng T, Schwartz E, Lavery L, Whiting G, Krusor RB,B, Veres J, Broms P, Herlogsson L, Alam N, Hagel O, Nilsson J, Karlsson C (2012) Scalable printed electronics: a printed decoder addressing ferroelectric nonvolatile memory. Sci Rep 2:585CrossRef Ng T, Schwartz E, Lavery L, Whiting G, Krusor RB,B, Veres J, Broms P, Herlogsson L, Alam N, Hagel O, Nilsson J, Karlsson C (2012) Scalable printed electronics: a printed decoder addressing ferroelectric nonvolatile memory. Sci Rep 2:585CrossRef
71.
go back to reference Ready S, Endicott F, Whiting G, Ng T, Chow E, Lu J (2013) 3D printed electronics. In: NIP 29 and Digital Fabrication pp 9–12 Ready S, Endicott F, Whiting G, Ng T, Chow E, Lu J (2013) 3D printed electronics. In: NIP 29 and Digital Fabrication pp 9–12
72.
go back to reference MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353:aaf2093CrossRef MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353:aaf2093CrossRef
73.
go back to reference Jung S, Sou A, Gili E, Sirringhaus H (2013) Inkjet-printed resistors with a wide resistance range for printed read-only memory applications. Org Electron 14:699–702CrossRef Jung S, Sou A, Gili E, Sirringhaus H (2013) Inkjet-printed resistors with a wide resistance range for printed read-only memory applications. Org Electron 14:699–702CrossRef
75.
go back to reference Wu S-Y, Yang C, Hsu W, Lin L (2015) 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsyst Nanoeng 1:15013CrossRef Wu S-Y, Yang C, Hsu W, Lin L (2015) 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsyst Nanoeng 1:15013CrossRef
76.
go back to reference Kong Y, Tamargo I, Kim H, Johnson B, Gupta M, Koh T-W, Chin H-A, Steingart D, Rand B, McAlpine M (2014) 3D printed quantum dot light-emitting diodes. Nano Lett 14:7017–7020CrossRef Kong Y, Tamargo I, Kim H, Johnson B, Gupta M, Koh T-W, Chin H-A, Steingart D, Rand B, McAlpine M (2014) 3D printed quantum dot light-emitting diodes. Nano Lett 14:7017–7020CrossRef
77.
go back to reference Goh G, Ma J, Chua K, Shweta A, Yeong W, Zhang Y (2016) Inkjet-printed patch antenna emitter for wireless communication application. Virtual Phys Prototyp 11:289–294CrossRef Goh G, Ma J, Chua K, Shweta A, Yeong W, Zhang Y (2016) Inkjet-printed patch antenna emitter for wireless communication application. Virtual Phys Prototyp 11:289–294CrossRef
78.
go back to reference Adams J, Bernhard J (2009) Tuning method for a new electrically small antenna with low Q. IEEE Antennas Wireless Propag Lett 8:303–306CrossRef Adams J, Bernhard J (2009) Tuning method for a new electrically small antenna with low Q. IEEE Antennas Wireless Propag Lett 8:303–306CrossRef
79.
go back to reference Adams J, Duoss EB, Malkowski T, Motala M, Ahn B, Nuzzo R, Bernhard J, Lewis J (2011) Conformal printing of electrically snall antennas on three-dimensional surfaces. Adv Mater 23:1335–1340CrossRef Adams J, Duoss EB, Malkowski T, Motala M, Ahn B, Nuzzo R, Bernhard J, Lewis J (2011) Conformal printing of electrically snall antennas on three-dimensional surfaces. Adv Mater 23:1335–1340CrossRef
80.
go back to reference Baca A, Yu K, Xiao J, Wang S, Yoon J, Ryu J, Stevenson D, Nuzzo R, Rockett A, Huang Y, Rogers J (2010) Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ Sci 3:208–211CrossRef Baca A, Yu K, Xiao J, Wang S, Yoon J, Ryu J, Stevenson D, Nuzzo R, Rockett A, Huang Y, Rogers J (2010) Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ Sci 3:208–211CrossRef
81.
go back to reference Rogers J, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju V, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci/ USA 98(9):4835–4840CrossRef Rogers J, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju V, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci/ USA 98(9):4835–4840CrossRef
82.
go back to reference Fichet G, Corcoran N, Ho P, Arias A, MacKenzie J, Huck W, Friend R (2004) Self-organized photonic structures in polymer light-emitting diodes. Adv Mater 16:1908CrossRef Fichet G, Corcoran N, Ho P, Arias A, MacKenzie J, Huck W, Friend R (2004) Self-organized photonic structures in polymer light-emitting diodes. Adv Mater 16:1908CrossRef
83.
go back to reference Someya T, Kato Y, Sekitani S, Iba Y, Noguchi Y, Murase H, Kawaguchi, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102(35):12321–12325CrossRef Someya T, Kato Y, Sekitani S, Iba Y, Noguchi Y, Murase H, Kawaguchi, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102(35):12321–12325CrossRef
84.
go back to reference Cao Q, Hur S-H, Zhu Z-T, Sun Y, Wang C, Meitl M, Shim M, Rogers J (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309CrossRef Cao Q, Hur S-H, Zhu Z-T, Sun Y, Wang C, Meitl M, Shim M, Rogers J (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309CrossRef
85.
go back to reference Gaikwad A, Whiting G, Steingart D, Arias A (2011) Highly flexible printed alkaline batteries based on mesh embedded electrodes. Adv Mater 23:3251CrossRef Gaikwad A, Whiting G, Steingart D, Arias A (2011) Highly flexible printed alkaline batteries based on mesh embedded electrodes. Adv Mater 23:3251CrossRef
86.
go back to reference Liu H, Huang W, Gao J, Dai K, Zheng G, Liu C (2016) Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl Phys Lett 108(1):11904CrossRef Liu H, Huang W, Gao J, Dai K, Zheng G, Liu C (2016) Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl Phys Lett 108(1):11904CrossRef
87.
go back to reference Yao H, Ge J, Wang C, Wang X, Hu W, Zheng Z, Ni Y, Yu S (2013) A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv Mater 25(46):6692–6698CrossRef Yao H, Ge J, Wang C, Wang X, Hu W, Zheng Z, Ni Y, Yu S (2013) A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv Mater 25(46):6692–6698CrossRef
88.
go back to reference Chen Q, Cao P, Advincula R (2018) Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing. Adv Func Mater 28:1800631CrossRef Chen Q, Cao P, Advincula R (2018) Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing. Adv Func Mater 28:1800631CrossRef
89.
go back to reference Fan YJ, Meng XS, Li HY, Kuang SY, Zhang L, Wu Y, Wang ZL, Zhu G (2017) Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv Mater 29(2):1603115CrossRef Fan YJ, Meng XS, Li HY, Kuang SY, Zhang L, Wu Y, Wang ZL, Zhu G (2017) Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv Mater 29(2):1603115CrossRef
90.
go back to reference Liu C, Choi J (2009) An embedded PDMS nanocomposite strain sensor toward biomedical applications. In: Engineering in Medicine and Biology Society, annual international conference of the IEEE, pp 6391–6394 Liu C, Choi J (2009) An embedded PDMS nanocomposite strain sensor toward biomedical applications. In: Engineering in Medicine and Biology Society, annual international conference of the IEEE, pp 6391–6394
91.
go back to reference Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5):5154–5163CrossRef Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) “Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5):5154–5163CrossRef
92.
go back to reference Chen Q, Mangadlao J, Wallat J, de Leon A, Pokorski J, Advincula R (2017) 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl Mater Interfaces 9(4):4015–4023CrossRef Chen Q, Mangadlao J, Wallat J, de Leon A, Pokorski J, Advincula R (2017) 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl Mater Interfaces 9(4):4015–4023CrossRef
93.
go back to reference Bates S, Farrow I, Trask R, RG S (2016) 3D printed elastic honeycombs with graded density for tailorable energy absorption. SPIE smart structures and materials + nondestructive evaluation and health monitoring. International Society for Optics and Photonics, Bellingham, p 979907 Bates S, Farrow I, Trask R, RG S (2016) 3D printed elastic honeycombs with graded density for tailorable energy absorption. SPIE smart structures and materials + nondestructive evaluation and health monitoring. International Society for Optics and Photonics, Bellingham, p 979907
94.
go back to reference Christ J, Aliheidari N, Ameli A, Potschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Design 131:394–401CrossRef Christ J, Aliheidari N, Ameli A, Potschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Design 131:394–401CrossRef
95.
go back to reference Muth J, Vogt D, Trugby R, Menguc Y, Kolesky D, Wood R, Lewis J (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312CrossRef Muth J, Vogt D, Trugby R, Menguc Y, Kolesky D, Wood R, Lewis J (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312CrossRef
96.
go back to reference Choi J-H, Wang H, Oh J, Paik T, Jo P, SUng J, Ye X, Zhao T, Murray DBT,C, Kagan C (2016) Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352(6282):205–208CrossRef Choi J-H, Wang H, Oh J, Paik T, Jo P, SUng J, Ye X, Zhao T, Murray DBT,C, Kagan C (2016) Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352(6282):205–208CrossRef
97.
go back to reference Wehner M, Truby R, Fitzgerald D, Mosadegh B, Whitesides G, Lewis J, Wood R (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455CrossRef Wehner M, Truby R, Fitzgerald D, Mosadegh B, Whitesides G, Lewis J, Wood R (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455CrossRef
98.
go back to reference Malone E, Bery M, Lipson H (2008) Freeform fabrication and characterization of Zn-air batteries. Rapid Prototyp J 14(3):128–140CrossRef Malone E, Bery M, Lipson H (2008) Freeform fabrication and characterization of Zn-air batteries. Rapid Prototyp J 14(3):128–140CrossRef
99.
go back to reference Sun K, Wei T-S, Ahn B, Seo J, DIllon S, Lewis J (2013) 3D printing of interdigitated Li-Ion microbattery architecture. Adv Mater 25:4539–4543CrossRef Sun K, Wei T-S, Ahn B, Seo J, DIllon S, Lewis J (2013) 3D printing of interdigitated Li-Ion microbattery architecture. Adv Mater 25:4539–4543CrossRef
101.
go back to reference Sridhar A (2010) An inkjet printing-based process chain for conductive structures on printed circuit board materials. Thesis PhD, University of Twente, the Netherlands, Sridhar A (2010) An inkjet printing-based process chain for conductive structures on printed circuit board materials. Thesis PhD, University of Twente, the Netherlands,
102.
go back to reference Parashkhov R, Becker E, Riedl T, Johannes H-H, Kowalsky W (2005) All-organic thin-film transistors made of poly(3-butylthiophene) semiconducting and various polymeric insulating layers. In: W. Proc. IEEE, vol. 93, no. 7 Parashkhov R, Becker E, Riedl T, Johannes H-H, Kowalsky W (2005) All-organic thin-film transistors made of poly(3-butylthiophene) semiconducting and various polymeric insulating layers. In: W. Proc. IEEE, vol. 93, no. 7
104.
go back to reference Pekkanen J (2007) Sintering of inkjet printed Ag nanoparticles. Master of Science thesis, Tampere, Finland Pekkanen J (2007) Sintering of inkjet printed Ag nanoparticles. Master of Science thesis, Tampere, Finland
106.
go back to reference Gaynor A, Meisel N, Williams C, Guest J (2014) Multi-material topology optimization of compliant mechanisms created via PlyJet three-dimensional printing. J Manuf Sci Eng 136(6):061015CrossRef Gaynor A, Meisel N, Williams C, Guest J (2014) Multi-material topology optimization of compliant mechanisms created via PlyJet three-dimensional printing. J Manuf Sci Eng 136(6):061015CrossRef
107.
go back to reference Gibson I, Rosen D, Stucker B (2010) Additive manufacturing technologies. Springer, BostonCrossRef Gibson I, Rosen D, Stucker B (2010) Additive manufacturing technologies. Springer, BostonCrossRef
108.
go back to reference Perelaer J, Schubert U, Jena F (2010) Inkjet printing and alternative sintering of narrow conductive tracks on flexible substrates for plastic electronic applications. Radio frequency identification fundamentals and applications, design methods and solutions. InTech, Rijeka, Croatia, pp 265–286 Perelaer J, Schubert U, Jena F (2010) Inkjet printing and alternative sintering of narrow conductive tracks on flexible substrates for plastic electronic applications. Radio frequency identification fundamentals and applications, design methods and solutions. InTech, Rijeka, Croatia, pp 265–286
109.
go back to reference Lee J-Y, An J, Chua C (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRef Lee J-Y, An J, Chua C (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRef
Metadata
Title
3D-printing and advanced manufacturing for electronics
Authors
Alejandro H. Espera Jr.
John Ryan C. Dizon
Qiyi Chen
Rigoberto C. Advincula
Publication date
04-02-2019
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 3/2019
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-019-00077-7

Other articles of this Issue 3/2019

Progress in Additive Manufacturing 3/2019 Go to the issue

Premium Partners