Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

15-11-2019

57Fe Mössbauer study of high-yield CuFe2O4 nanoparticles produced by the levitation-jet aerosol technique with post-synthesis annealing

Authors: Lara K. Bogart, Iurii G. Morozov, Olga V. Belousova, Maksim V. Kuznetsov

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pseudo-spherical cubic-shaped nanoparticles of spinel ferrite CuFe2O4 have been prepared using a two-stage process. At first, an evaporation of levitating copper–iron drop into mix of helium–air gas flow took place, which resulting in copper ferrite-based powders. Then, such powders were additionally oxidized trough the heterogeneous auto-wave combustion in open air. We studied the effect of performing the synthesis in either an air or a helium environment on the phase composition of nanoparticles, and how the use of a post-synthesis annealing step modifies this, using room temperature 57Fe Mössbauer spectroscopy. By applying this technique, we are able to distinguish between the normal (non-magnetic) and inverse cubic (magnetic) phases of CuFe2O4, which is usually inaccessible using X-ray diffraction, as well as quantifying their relative amounts within each sample. Furthermore, we have been able to quantify trace amounts of the tetragonal CuFe2O4, phases that are typically obscured by line-broadening effects within our X-ray diffraction data, which indicates that annealing using a propane flame can also cause a cubic to tetragonal distortion in the crystal structure of the spinel lattice. Finally, by combining our Mössbauer parameters, which are sensitive to the Fe-containing phases only, with X-ray diffraction data, which are sensitive to all phases, we report on the full phase composition for the first time for nanoparticles produced via this synthesis route.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Room temperature has been defined here as 295 ± 5 K.
 
Literature
1.
go back to reference Z. Sun, L. Liu, D.Z. Jia, W. Pan, Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens. Actuators B: Chem. 125(1), 144–148 (2007)CrossRef Z. Sun, L. Liu, D.Z. Jia, W. Pan, Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens. Actuators B: Chem. 125(1), 144–148 (2007)CrossRef
2.
go back to reference M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23(3), 315–323 (2012)CrossRef M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23(3), 315–323 (2012)CrossRef
3.
go back to reference S.D. Sartale, C.D. Lokhande, M. Muller, Electrochemical synthesis of nanocrystalline CuFe2O4 thin films from non-aqueous (ethylene glycol) medium. Mater. Chem. Phys. 80(1), 120–128 (2003)CrossRef S.D. Sartale, C.D. Lokhande, M. Muller, Electrochemical synthesis of nanocrystalline CuFe2O4 thin films from non-aqueous (ethylene glycol) medium. Mater. Chem. Phys. 80(1), 120–128 (2003)CrossRef
4.
go back to reference S. Kameoka, T. Tanabe, A.P. Tsai, Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4. Appl. Catal. A: Gen. 375(1), 163–171 (2010)CrossRef S. Kameoka, T. Tanabe, A.P. Tsai, Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4. Appl. Catal. A: Gen. 375(1), 163–171 (2010)CrossRef
5.
go back to reference N.C.S. Selvam, R.T. Kumar, L.J. Kennedy, J.J. Vijaya, Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloys Compd. 509(41), 9809–9815 (2011)CrossRef N.C.S. Selvam, R.T. Kumar, L.J. Kennedy, J.J. Vijaya, Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloys Compd. 509(41), 9809–9815 (2011)CrossRef
6.
go back to reference W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 11(2), 479–484 (2009)CrossRef W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci. 11(2), 479–484 (2009)CrossRef
7.
go back to reference T. Liu, L. Wang, P. Yang, B. Hu, Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate. Mater. Lett. 62(24), 4056–4058 (2008)CrossRef T. Liu, L. Wang, P. Yang, B. Hu, Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate. Mater. Lett. 62(24), 4056–4058 (2008)CrossRef
8.
go back to reference J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferromagnetic Oxides in Relation to their Technical Applications (Philips Technical Library, Eindhoven, 1965) J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferromagnetic Oxides in Relation to their Technical Applications (Philips Technical Library, Eindhoven, 1965)
9.
go back to reference G.F. Goya, H.R. Rechenberg, Superparamagnetic transition and local disorder in CuFe2O4 nanoparticles. Nanostruct. Mater. 10(6), 1001–1011 (1998)CrossRef G.F. Goya, H.R. Rechenberg, Superparamagnetic transition and local disorder in CuFe2O4 nanoparticles. Nanostruct. Mater. 10(6), 1001–1011 (1998)CrossRef
10.
go back to reference J.Z. Jiang, G.F. Goya, H.R. Rechenberg, Magnetic properties of nanostructured CuFe2O4. J. Phys.: Condens. Matter 11(20), 4063–4078 (1999) J.Z. Jiang, G.F. Goya, H.R. Rechenberg, Magnetic properties of nanostructured CuFe2O4. J. Phys.: Condens. Matter 11(20), 4063–4078 (1999)
11.
go back to reference M.V. Kuznetsov, Y.G. Morozov, O.V. Belousova, Synthesis of copper ferrite nanoparticles. Inorg. Mater. 49(6), 606–615 (2013)CrossRef M.V. Kuznetsov, Y.G. Morozov, O.V. Belousova, Synthesis of copper ferrite nanoparticles. Inorg. Mater. 49(6), 606–615 (2013)CrossRef
12.
go back to reference M.V. Kuznetsov, Y.G. Morozov, O.V. Belousova, Levitation jet synthesis of nickel ferrite nanoparticles. Inorg. Mater. 48(10), 1044–1051 (2012)CrossRef M.V. Kuznetsov, Y.G. Morozov, O.V. Belousova, Levitation jet synthesis of nickel ferrite nanoparticles. Inorg. Mater. 48(10), 1044–1051 (2012)CrossRef
13.
go back to reference I.G. Morozov, S. Sathasivam, O.V. Belousova, I.V. Shishkovsky, M.V. Kuznetcov, Room temperature ferromagnetism in mixed-phase titania nanoparticles produced by the levitation–jet generator. J. Mater. Sci.: Mater. Electron. 29(4), 3304–3316 (2018) I.G. Morozov, S. Sathasivam, O.V. Belousova, I.V. Shishkovsky, M.V. Kuznetcov, Room temperature ferromagnetism in mixed-phase titania nanoparticles produced by the levitation–jet generator. J. Mater. Sci.: Mater. Electron. 29(4), 3304–3316 (2018)
14.
go back to reference K. Lagarec, D.G. Rancourt, RECOIL, Mössbauer spectral analysis software for windows (version 1.0), Department of Physics, University of Ottawa, Canada (1998) K. Lagarec, D.G. Rancourt, RECOIL, Mössbauer spectral analysis software for windows (version 1.0), Department of Physics, University of Ottawa, Canada (1998)
15.
go back to reference S. Lacombe, H. Cardy, N. Soggiu, S. Blanc, J.L. Habib-Jiwan, J.P. Soumillion, Diffuse reflectance UV–Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica. Microporous Mesoporous Mater. 46(2–3), 311–325 (2001)CrossRef S. Lacombe, H. Cardy, N. Soggiu, S. Blanc, J.L. Habib-Jiwan, J.P. Soumillion, Diffuse reflectance UV–Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica. Microporous Mesoporous Mater. 46(2–3), 311–325 (2001)CrossRef
16.
go back to reference J. Tauc, Amorphous and Liquid Semiconductors (Springer, Berlin, 2012) J. Tauc, Amorphous and Liquid Semiconductors (Springer, Berlin, 2012)
17.
go back to reference L.B. Zakiyah, E. Saion, N.M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, S. Gene, Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method. Mater. Sci. Semicond. Process. 40, 564–569 (2015)CrossRef L.B. Zakiyah, E. Saion, N.M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, S. Gene, Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method. Mater. Sci. Semicond. Process. 40, 564–569 (2015)CrossRef
18.
go back to reference F. Shahbaz Tehrani, V. Daadmehr, A.T. Rezakhani, R. Hosseini Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25(7), 2443–2455 (2012)CrossRef F. Shahbaz Tehrani, V. Daadmehr, A.T. Rezakhani, R. Hosseini Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25(7), 2443–2455 (2012)CrossRef
19.
go back to reference D. Anceila, G. Francisco Nirmala, P. Sagayaraj, V. Joseph, Study on optical, magnetic and structural properties of CuFe2O4 by Co-precipitation technique. Int. Res. J. Eng. Technol. 04(Special issue 09), 370–372 (2017) D. Anceila, G. Francisco Nirmala, P. Sagayaraj, V. Joseph, Study on optical, magnetic and structural properties of CuFe2O4 by Co-precipitation technique. Int. Res. J. Eng. Technol. 04(Special issue 09), 370–372 (2017)
20.
go back to reference B.J. Rani, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Structural, optical and magnetic properties of CuFe2O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 29(3), 1975–1984 (2018) B.J. Rani, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Structural, optical and magnetic properties of CuFe2O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 29(3), 1975–1984 (2018)
21.
go back to reference Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60(29), 3548–3552 (2006)CrossRef Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60(29), 3548–3552 (2006)CrossRef
22.
go back to reference M. Kanagaraj, P. Sathishkumar, G. Kalai Selvan, I. PhebeKokila, S. Arumugam, Structural and magnetic properties of CuFe2O4 as-prepared and thermally treated spinel nanoferrites. Indian J. Pure Appl. Phys. 52, 124–130 (2014) M. Kanagaraj, P. Sathishkumar, G. Kalai Selvan, I. PhebeKokila, S. Arumugam, Structural and magnetic properties of CuFe2O4 as-prepared and thermally treated spinel nanoferrites. Indian J. Pure Appl. Phys. 52, 124–130 (2014)
23.
go back to reference J. Kurian, M.J. Mathew, Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. J. Magn. Magn. Mater. 451, 121–130 (2018)CrossRef J. Kurian, M.J. Mathew, Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. J. Magn. Magn. Mater. 451, 121–130 (2018)CrossRef
24.
go back to reference W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin, Q.A. Pankhurst, Self-propagating high-temperature synthesis of ferrites MFe2O4 (M = Mg, Ba Co, Ni, Cu, Zn); reactions in an external magnetic field. J. Mater. Chem. 9(10), 2545–2552 (1999)CrossRef W.B. Cross, L. Affleck, M.V. Kuznetsov, I.P. Parkin, Q.A. Pankhurst, Self-propagating high-temperature synthesis of ferrites MFe2O4 (M = Mg, Ba Co, Ni, Cu, Zn); reactions in an external magnetic field. J. Mater. Chem. 9(10), 2545–2552 (1999)CrossRef
25.
go back to reference B.J. Evans, S. Hafner, G.M. Kalvius, Hyperfine fields of 57Fe at the A and B sites in copper ferrite (CuFe2O4). Phys. Lett. 23(1), 24–25 (1966)CrossRef B.J. Evans, S. Hafner, G.M. Kalvius, Hyperfine fields of 57Fe at the A and B sites in copper ferrite (CuFe2O4). Phys. Lett. 23(1), 24–25 (1966)CrossRef
26.
go back to reference Y. Zhang, G.C. Stangle, Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. J. Mater. Res. 9(8), 1997–2004 (1994)CrossRef Y. Zhang, G.C. Stangle, Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. J. Mater. Res. 9(8), 1997–2004 (1994)CrossRef
Metadata
Title
57Fe Mössbauer study of high-yield CuFe2O4 nanoparticles produced by the levitation-jet aerosol technique with post-synthesis annealing
Authors
Lara K. Bogart
Iurii G. Morozov
Olga V. Belousova
Maksim V. Kuznetsov
Publication date
15-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02499-z

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue