Skip to main content
Top
Published in: Shape Memory and Superelasticity 1/2024

20-11-2023 | REVIEW

A Brief Review on Discrete Modelling of Martensitic Phase Transformations

Authors: Mahendaran Uchimali, P. Sittner

Published in: Shape Memory and Superelasticity | Issue 1/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most materials possess microstructural features at small length scales which are either stationary, such as grains and grain boundaries, phases and phase boundaries, precipitates, inclusions or mobile which tend to evolve during thermomechanical loads, such as cracks, twins or mobile interphase boundaries. The mechanical response of materials depends strongly on these microstructural features. Continuum models are frequently incapable of dealing with the latter microstructural features because they lack information on the evolving microstructure. There is an alternative class of models called Discrete Element Models (DEMs) which are applicable to describe the thermomechanical behaviour of solids, fluids and granular matter (material is modelled as a set of interacting point masses). With their inherent discreteness, DEMs are capable of incorporating the effects of microstructure as well as its evolution on the macroscopic behaviour. The recent development on deriving particle interactions from continuum free energy paves the way for the discrete models to describe complex behaviours like plasticity and phase transformations. This article explains how discrete models can be applied to simulate thermomechanical behaviour and evolving microstructures in martensitically transforming shape memory alloys (SMA). Results of the two dimensional simulations of thermally and stress-induced martensitic transformations for two kinds of martensitic transformation (square to rectangle and square to parallelogram) in SMA single crystal are presented and discussed. Although discrete element models cannot substitute continuum or micromechanics models of thermomechanical functional behaviour of SMAs, they can be successfully applied to investigate various phenomena that are so far poorly understood in SMA research, as for example the role of microstructure evolution or polycrystal grains (size, shape, texture, multiaxial stress) in SMA mechanics.
Literature
1.
go back to reference Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef
2.
go back to reference Li QK, Li M (2006) Atomic scale characterization of shear bands in an amorphous metal. Appl Phys Lett 88(24):1–4CrossRef Li QK, Li M (2006) Atomic scale characterization of shear bands in an amorphous metal. Appl Phys Lett 88(24):1–4CrossRef
3.
go back to reference Zhong C, Zhang H, Cao QP, Wang XD, Zhang DX, Ramamurty U, Jiang JZ (2016) Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Sci Rep 6(30935):1–12 Zhong C, Zhang H, Cao QP, Wang XD, Zhang DX, Ramamurty U, Jiang JZ (2016) Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Sci Rep 6(30935):1–12
4.
go back to reference Purja Pun GP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys Condens Matter 22(39):395403CrossRef Purja Pun GP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys Condens Matter 22(39):395403CrossRef
5.
go back to reference Gullett PM, Horstemeyer MF, Baskes MI, Fang H (2008) A deformation gradient tensor and strain tensors for atomistic simulations. Modell Simul Mater Sci Eng 16(1):1–17CrossRef Gullett PM, Horstemeyer MF, Baskes MI, Fang H (2008) A deformation gradient tensor and strain tensors for atomistic simulations. Modell Simul Mater Sci Eng 16(1):1–17CrossRef
6.
go back to reference Zimmerman JA, Bammann DJ, Gao H (2009) Deformation gradients for continuum mechanical analysis of atomistic simulations. Int J Solids Struct 46(2):238–253CrossRef Zimmerman JA, Bammann DJ, Gao H (2009) Deformation gradients for continuum mechanical analysis of atomistic simulations. Int J Solids Struct 46(2):238–253CrossRef
7.
go back to reference Cusatis G, Bažant ZP, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195(52):7154–7171CrossRef Cusatis G, Bažant ZP, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195(52):7154–7171CrossRef
8.
go back to reference Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRef Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRef
9.
go back to reference Thornton C, Yin KK (1991) Impact of elastic spheres with and without adhesion. Powder Technol 65:153–166CrossRef Thornton C, Yin KK (1991) Impact of elastic spheres with and without adhesion. Powder Technol 65:153–166CrossRef
10.
go back to reference Tordesillas A, Walsh DC (2002) Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol 124(1–2):106–111CrossRef Tordesillas A, Walsh DC (2002) Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol 124(1–2):106–111CrossRef
11.
go back to reference Zhou B, Huang R, Wang H, Wang J (2013) DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter 15(3):315–326CrossRef Zhou B, Huang R, Wang H, Wang J (2013) DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter 15(3):315–326CrossRef
12.
go back to reference Vijay Anand D, Patnaik BSV, Vedantam S (2017) A dissipative particle dynamics study of a flexible filament in confined shear flow. Soft Matter 13(7):1472–1480PubMedCrossRef Vijay Anand D, Patnaik BSV, Vedantam S (2017) A dissipative particle dynamics study of a flexible filament in confined shear flow. Soft Matter 13(7):1472–1480PubMedCrossRef
13.
go back to reference Lei L, Bertevas EL, Khoo BC, Phan-Thien N (2018) Many-body dissipative particle dynamics (MDPD) simulation of a pseudoplastic yield-stress fluid with surface tension in some flow processes. J Nonnewton Fluid Mech 260:163–174CrossRef Lei L, Bertevas EL, Khoo BC, Phan-Thien N (2018) Many-body dissipative particle dynamics (MDPD) simulation of a pseudoplastic yield-stress fluid with surface tension in some flow processes. J Nonnewton Fluid Mech 260:163–174CrossRef
14.
go back to reference Ranjith SK, Patnaik BSV, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232(1):174–188CrossRef Ranjith SK, Patnaik BSV, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232(1):174–188CrossRef
15.
go back to reference Wang G, Al-Ostaz A, Cheng AHD, Mantena PR (2009) Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci 44(4):1126–1134CrossRef Wang G, Al-Ostaz A, Cheng AHD, Mantena PR (2009) Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci 44(4):1126–1134CrossRef
16.
go back to reference Chen H, Xu Y, Jiao Y, Liu Y (2016) A novel discrete computational tool for microstructure-sensitive mechanical analysis of composite materials. Mater Sci Eng A 659:234–241CrossRef Chen H, Xu Y, Jiao Y, Liu Y (2016) A novel discrete computational tool for microstructure-sensitive mechanical analysis of composite materials. Mater Sci Eng A 659:234–241CrossRef
17.
go back to reference Omori T, Ishikawa T, Barthès-Biesel D, Salsac AV, Walter J, Imai Y, Yamaguchi T (2011) Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow. Phys Rev E 83(4):1–11CrossRef Omori T, Ishikawa T, Barthès-Biesel D, Salsac AV, Walter J, Imai Y, Yamaguchi T (2011) Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow. Phys Rev E 83(4):1–11CrossRef
18.
go back to reference Monette L, Anderson MP (1994) Elastic and fracture properties of the two-dimensional. Modell Simul Mater Sci Eng 2(1):53–66CrossRef Monette L, Anderson MP (1994) Elastic and fracture properties of the two-dimensional. Modell Simul Mater Sci Eng 2(1):53–66CrossRef
19.
go back to reference Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55(1):35CrossRef Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55(1):35CrossRef
20.
go back to reference Nikolić M, Karavelić E, Ibrahimbegovic A, Miščević P (2018) Lattice element models and their peculiarities. Arch Comput Methods Eng 25(3):753–784CrossRef Nikolić M, Karavelić E, Ibrahimbegovic A, Miščević P (2018) Lattice element models and their peculiarities. Arch Comput Methods Eng 25(3):753–784CrossRef
21.
go back to reference Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71(9):1–12CrossRef Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71(9):1–12CrossRef
22.
go back to reference Schlangen E (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34(10):1131–1144CrossRef Schlangen E (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34(10):1131–1144CrossRef
23.
go back to reference Uchimali M, Rao BC, Vedantam S (2020) Constitutively informed multi-body interactions for lattice particle models. Comput Methods Appl Mech Eng 366:113052CrossRef Uchimali M, Rao BC, Vedantam S (2020) Constitutively informed multi-body interactions for lattice particle models. Comput Methods Appl Mech Eng 366:113052CrossRef
24.
go back to reference Sperling SO, Hoefnagels JPM, van den Broek K, Geers MGD (2022) A continuum consistent discrete particle method for continuum–discontinuum transitions and complex fracture problems. Comput Methods Appl Mech Eng 390:114460CrossRef Sperling SO, Hoefnagels JPM, van den Broek K, Geers MGD (2022) A continuum consistent discrete particle method for continuum–discontinuum transitions and complex fracture problems. Comput Methods Appl Mech Eng 390:114460CrossRef
25.
go back to reference Müller I, Xu H (1991) On the pseudo-elastic hysteresis. Acta Metall Mater 39(3):263–271CrossRef Müller I, Xu H (1991) On the pseudo-elastic hysteresis. Acta Metall Mater 39(3):263–271CrossRef
26.
go back to reference Puglisi G, Truskinovsky L (2000) Mechanics of a discrete chain with bi-stable elements. J Mech Phys Solids 48(1):1–27CrossRef Puglisi G, Truskinovsky L (2000) Mechanics of a discrete chain with bi-stable elements. J Mech Phys Solids 48(1):1–27CrossRef
27.
go back to reference Müller I, Villaggio P (1977) A model for an elastic-plastic body. Arch Ration Mech Anal 65(1):25–46CrossRef Müller I, Villaggio P (1977) A model for an elastic-plastic body. Arch Ration Mech Anal 65(1):25–46CrossRef
28.
go back to reference Salman OU, Truskinovsky L (2011) Minimal integer automaton behind crystal plasticity. Phys Rev Lett 106(17):175503PubMedCrossRef Salman OU, Truskinovsky L (2011) Minimal integer automaton behind crystal plasticity. Phys Rev Lett 106(17):175503PubMedCrossRef
29.
go back to reference Ben-Shmuel Y, Altus E (2017) Modeling plasticity by non-continuous deformation. Comput Particle Mech 4(4):487–501CrossRef Ben-Shmuel Y, Altus E (2017) Modeling plasticity by non-continuous deformation. Comput Particle Mech 4(4):487–501CrossRef
30.
go back to reference Sharma BL, Vainchtein A (2007) Quasistatic propagation of steps along a phase boundary. Continuum Mech Thermodyn 19:347–377CrossRef Sharma BL, Vainchtein A (2007) Quasistatic propagation of steps along a phase boundary. Continuum Mech Thermodyn 19:347–377CrossRef
31.
go back to reference Benichou I, Faran E, Shilo D, Givli S (2013) Application of a bi-stable chain model for the analysis of jerky twin boundary motion in NiMnGa. Appl Phys Lett 102(1):11912CrossRef Benichou I, Faran E, Shilo D, Givli S (2013) Application of a bi-stable chain model for the analysis of jerky twin boundary motion in NiMnGa. Appl Phys Lett 102(1):11912CrossRef
32.
go back to reference Slepyan LI (1981) Dynamics of a crack in a lattice. Dokl Akad Nauk SSSR 258(3):561–564 Slepyan LI (1981) Dynamics of a crack in a lattice. Dokl Akad Nauk SSSR 258(3):561–564
33.
go back to reference Braides A, Dal Maso G, Garroni A (1999) Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch Ration Mech Anal 146:23–58CrossRef Braides A, Dal Maso G, Garroni A (1999) Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch Ration Mech Anal 146:23–58CrossRef
34.
go back to reference Benichou I, Givli S (2015) Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys Rev Lett 114(9):95504CrossRef Benichou I, Givli S (2015) Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys Rev Lett 114(9):95504CrossRef
35.
go back to reference Elias-Mordechai M, Chetrit E, Berkovich R (2020) Interplay between viscoelasticity and force rate affects sequential unfolding in polyproteins pulled at constant velocity. Macromolecules 53(8):3021–3029PubMedPubMedCentralCrossRef Elias-Mordechai M, Chetrit E, Berkovich R (2020) Interplay between viscoelasticity and force rate affects sequential unfolding in polyproteins pulled at constant velocity. Macromolecules 53(8):3021–3029PubMedPubMedCentralCrossRef
36.
go back to reference Fraternali F, Blesgen T, Amendola A, Daraio C (2011) Multiscale mass-spring models of carbon nanotube foams. J Mech Phys Solids 59(1):89–102CrossRef Fraternali F, Blesgen T, Amendola A, Daraio C (2011) Multiscale mass-spring models of carbon nanotube foams. J Mech Phys Solids 59(1):89–102CrossRef
37.
go back to reference Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935PubMedCrossRef Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935PubMedCrossRef
38.
go back to reference Restrepo D, Mankame ND, Zavattieri PD (2015) Phase transforming cellular materials. Extreme Mech Lett 4:52–60CrossRef Restrepo D, Mankame ND, Zavattieri PD (2015) Phase transforming cellular materials. Extreme Mech Lett 4:52–60CrossRef
39.
go back to reference Truskinovsky L, Vainchtein A (2006) Kinetics of martensitic phase transitions: lattice model. SIAM J Appl Math 66(2):533–553CrossRef Truskinovsky L, Vainchtein A (2006) Kinetics of martensitic phase transitions: lattice model. SIAM J Appl Math 66(2):533–553CrossRef
40.
go back to reference Atkinson W, Cabrera N (1965) Motion of a Frenkel-Kontorowa dislocation in a one-dimensional crystal. Phys Rev 138(3A):763–766CrossRef Atkinson W, Cabrera N (1965) Motion of a Frenkel-Kontorowa dislocation in a one-dimensional crystal. Phys Rev 138(3A):763–766CrossRef
41.
go back to reference Charlotte M, Truskinovsky L (2002) Linear elastic chain with a hyper-pre-stress. J Mech Phys Solids 50(2):217–251CrossRef Charlotte M, Truskinovsky L (2002) Linear elastic chain with a hyper-pre-stress. J Mech Phys Solids 50(2):217–251CrossRef
42.
go back to reference Friesecke G, Theil F (2002) Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J Nonlinear Sci 12(5):445–478CrossRef Friesecke G, Theil F (2002) Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J Nonlinear Sci 12(5):445–478CrossRef
43.
go back to reference Vainchtein A (2010) The role of spinodal region in the kinetics of lattice phase transitions. J Mech Phys Solids 58(2):227–240CrossRef Vainchtein A (2010) The role of spinodal region in the kinetics of lattice phase transitions. J Mech Phys Solids 58(2):227–240CrossRef
44.
go back to reference Puglisi G, Truskinovsky L (2002) Rate independent hysteresis in a bi-stable chain. J Mech Phys Solids 50(2):165–187CrossRef Puglisi G, Truskinovsky L (2002) Rate independent hysteresis in a bi-stable chain. J Mech Phys Solids 50(2):165–187CrossRef
45.
go back to reference Seelecke WBAS (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30:1969–2012CrossRef Seelecke WBAS (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30:1969–2012CrossRef
46.
go back to reference Zhen Y, Vainchtein A (2008) Dynamics of steps along a martensitic phase boundary I. Semi-analytical solution. J Mech Phys Solids 56(2):496–520CrossRef Zhen Y, Vainchtein A (2008) Dynamics of steps along a martensitic phase boundary I. Semi-analytical solution. J Mech Phys Solids 56(2):496–520CrossRef
47.
go back to reference Cherkaev A, Cherkaev E, Slepyan L (2005) Transition waves in bistable structures. I. Delocalization of damage. J Mech Phys Solids 53(2):383–405CrossRef Cherkaev A, Cherkaev E, Slepyan L (2005) Transition waves in bistable structures. I. Delocalization of damage. J Mech Phys Solids 53(2):383–405CrossRef
48.
go back to reference Katz S, Givli S (2020) Boomerons in a 1-D lattice with only nearest-neighbor interactions. Europhys Lett 131(6):64002CrossRef Katz S, Givli S (2020) Boomerons in a 1-D lattice with only nearest-neighbor interactions. Europhys Lett 131(6):64002CrossRef
49.
go back to reference Katz S, Givli S (2018) Solitary waves in a bistable lattice. Extreme Mech Lett 22:106–111CrossRef Katz S, Givli S (2018) Solitary waves in a bistable lattice. Extreme Mech Lett 22:106–111CrossRef
50.
go back to reference Katz S, Givli S (2019) Solitary waves in a nonintegrable chain with double-well potentials. Phys Rev E 100(3):32209CrossRef Katz S, Givli S (2019) Solitary waves in a nonintegrable chain with double-well potentials. Phys Rev E 100(3):32209CrossRef
51.
go back to reference Truskinovsky L, Vainchtein A (2004) The origin of nucleation peak in transformational plasticity. J Mech Phys Solids 52(6):1421–1446CrossRef Truskinovsky L, Vainchtein A (2004) The origin of nucleation peak in transformational plasticity. J Mech Phys Solids 52(6):1421–1446CrossRef
52.
go back to reference Vedantam S, Mohanraj S (2009) Structural phase transitions in a discrete one-dimensional chain. Int J Appl Mech 01(03):545–556CrossRef Vedantam S, Mohanraj S (2009) Structural phase transitions in a discrete one-dimensional chain. Int J Appl Mech 01(03):545–556CrossRef
53.
go back to reference Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordCrossRef Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordCrossRef
54.
go back to reference Ericksen JL (1986) Constitutive theory for some constrained elastic crystals. Int J Solids Struct 22(9):951–964CrossRef Ericksen JL (1986) Constitutive theory for some constrained elastic crystals. Int J Solids Struct 22(9):951–964CrossRef
55.
go back to reference Vedantam S, Abeyaratne R (2005) A Helmholtz free-energy function for a Cu-Al-Ni shape memory alloy. Int J Non-Linear Mech 40(2–3):177–193CrossRef Vedantam S, Abeyaratne R (2005) A Helmholtz free-energy function for a Cu-Al-Ni shape memory alloy. Int J Non-Linear Mech 40(2–3):177–193CrossRef
56.
go back to reference Uchimali M, Rao BC, Vedantam S (2021) Modeling size and orientation effects on the morphology of microstructure formed in martensitic phase transformations using a novel discrete particle model. Acta Mater 205:116528CrossRef Uchimali M, Rao BC, Vedantam S (2021) Modeling size and orientation effects on the morphology of microstructure formed in martensitic phase transformations using a novel discrete particle model. Acta Mater 205:116528CrossRef
57.
go back to reference Shchyglo O, Salman U, Finel A (2012) Martensitic phase transformations in Ni-Ti-based shape memory alloys: the Landau theory. Acta Mater 60(19):6784–6792CrossRef Shchyglo O, Salman U, Finel A (2012) Martensitic phase transformations in Ni-Ti-based shape memory alloys: the Landau theory. Acta Mater 60(19):6784–6792CrossRef
58.
go back to reference Fang D, Lu W, Hwang KC (1998) Pseudoelastic behavior of CuAlNi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef Fang D, Lu W, Hwang KC (1998) Pseudoelastic behavior of CuAlNi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef
59.
go back to reference Ananchaperumal V, Vedantam S, Uchimali M (2022) A discrete particle model study of the effect of temperature and geometry on the pseudoelastic response of shape memory alloys. Int J Mech Sci 230:107527CrossRef Ananchaperumal V, Vedantam S, Uchimali M (2022) A discrete particle model study of the effect of temperature and geometry on the pseudoelastic response of shape memory alloys. Int J Mech Sci 230:107527CrossRef
60.
go back to reference Uchimali M (2022) Effect of stress on the thermal hysteresis of martensitic transformations—a continuum based particle dynamics model. Mech Adv Mater Struct 29(25):3794–3803CrossRef Uchimali M (2022) Effect of stress on the thermal hysteresis of martensitic transformations—a continuum based particle dynamics model. Mech Adv Mater Struct 29(25):3794–3803CrossRef
61.
go back to reference Ballew W, Seelecke S (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30(13):1969–2012CrossRef Ballew W, Seelecke S (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30(13):1969–2012CrossRef
62.
go back to reference Iaparova E, Heller L, Tyc O, Sittner P (2023) Thermally induced reorientation and plastic deformation of B19’ monoclinic martensite in nanocrystalline NiTi wires. Acta Mater 242:118477CrossRef Iaparova E, Heller L, Tyc O, Sittner P (2023) Thermally induced reorientation and plastic deformation of B19’ monoclinic martensite in nanocrystalline NiTi wires. Acta Mater 242:118477CrossRef
63.
go back to reference Uchimali M, Vedantam S (2022) Modeling stress–strain response of shape memory alloys during reorientation of self-accommodated martensites with different morphologies. Mech Adv Mater Struct 29(27):6948–6956CrossRef Uchimali M, Vedantam S (2022) Modeling stress–strain response of shape memory alloys during reorientation of self-accommodated martensites with different morphologies. Mech Adv Mater Struct 29(27):6948–6956CrossRef
64.
go back to reference Bray DW, Howe JM (1996) High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co-31.8 wt pct Ni alloy: Part 1. Plate interfaces and growth ledges. Metall Mater Trans A 27:3362–3370CrossRef Bray DW, Howe JM (1996) High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co-31.8 wt pct Ni alloy: Part 1. Plate interfaces and growth ledges. Metall Mater Trans A 27:3362–3370CrossRef
65.
go back to reference Vedantam S (2005) A nonstandard finite difference scheme for a strain-gradient theory. Comput Mech 35:369–375CrossRef Vedantam S (2005) A nonstandard finite difference scheme for a strain-gradient theory. Comput Mech 35:369–375CrossRef
Metadata
Title
A Brief Review on Discrete Modelling of Martensitic Phase Transformations
Authors
Mahendaran Uchimali
P. Sittner
Publication date
20-11-2023
Publisher
Springer US
Published in
Shape Memory and Superelasticity / Issue 1/2024
Print ISSN: 2199-384X
Electronic ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-023-00466-6

Other articles of this Issue 1/2024

Shape Memory and Superelasticity 1/2024 Go to the issue

Premium Partners