Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2024

20.11.2023 | REVIEW

A Brief Review on Discrete Modelling of Martensitic Phase Transformations

verfasst von: Mahendaran Uchimali, P. Sittner

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most materials possess microstructural features at small length scales which are either stationary, such as grains and grain boundaries, phases and phase boundaries, precipitates, inclusions or mobile which tend to evolve during thermomechanical loads, such as cracks, twins or mobile interphase boundaries. The mechanical response of materials depends strongly on these microstructural features. Continuum models are frequently incapable of dealing with the latter microstructural features because they lack information on the evolving microstructure. There is an alternative class of models called Discrete Element Models (DEMs) which are applicable to describe the thermomechanical behaviour of solids, fluids and granular matter (material is modelled as a set of interacting point masses). With their inherent discreteness, DEMs are capable of incorporating the effects of microstructure as well as its evolution on the macroscopic behaviour. The recent development on deriving particle interactions from continuum free energy paves the way for the discrete models to describe complex behaviours like plasticity and phase transformations. This article explains how discrete models can be applied to simulate thermomechanical behaviour and evolving microstructures in martensitically transforming shape memory alloys (SMA). Results of the two dimensional simulations of thermally and stress-induced martensitic transformations for two kinds of martensitic transformation (square to rectangle and square to parallelogram) in SMA single crystal are presented and discussed. Although discrete element models cannot substitute continuum or micromechanics models of thermomechanical functional behaviour of SMAs, they can be successfully applied to investigate various phenomena that are so far poorly understood in SMA research, as for example the role of microstructure evolution or polycrystal grains (size, shape, texture, multiaxial stress) in SMA mechanics.
Literatur
1.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef
2.
Zurück zum Zitat Li QK, Li M (2006) Atomic scale characterization of shear bands in an amorphous metal. Appl Phys Lett 88(24):1–4CrossRef Li QK, Li M (2006) Atomic scale characterization of shear bands in an amorphous metal. Appl Phys Lett 88(24):1–4CrossRef
3.
Zurück zum Zitat Zhong C, Zhang H, Cao QP, Wang XD, Zhang DX, Ramamurty U, Jiang JZ (2016) Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Sci Rep 6(30935):1–12 Zhong C, Zhang H, Cao QP, Wang XD, Zhang DX, Ramamurty U, Jiang JZ (2016) Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Sci Rep 6(30935):1–12
4.
Zurück zum Zitat Purja Pun GP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys Condens Matter 22(39):395403CrossRef Purja Pun GP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys Condens Matter 22(39):395403CrossRef
5.
Zurück zum Zitat Gullett PM, Horstemeyer MF, Baskes MI, Fang H (2008) A deformation gradient tensor and strain tensors for atomistic simulations. Modell Simul Mater Sci Eng 16(1):1–17CrossRef Gullett PM, Horstemeyer MF, Baskes MI, Fang H (2008) A deformation gradient tensor and strain tensors for atomistic simulations. Modell Simul Mater Sci Eng 16(1):1–17CrossRef
6.
Zurück zum Zitat Zimmerman JA, Bammann DJ, Gao H (2009) Deformation gradients for continuum mechanical analysis of atomistic simulations. Int J Solids Struct 46(2):238–253CrossRef Zimmerman JA, Bammann DJ, Gao H (2009) Deformation gradients for continuum mechanical analysis of atomistic simulations. Int J Solids Struct 46(2):238–253CrossRef
7.
Zurück zum Zitat Cusatis G, Bažant ZP, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195(52):7154–7171CrossRef Cusatis G, Bažant ZP, Cedolin L (2006) Confinement-shear lattice CSL model for fracture propagation in concrete. Comput Methods Appl Mech Eng 195(52):7154–7171CrossRef
8.
Zurück zum Zitat Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRef Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRef
9.
Zurück zum Zitat Thornton C, Yin KK (1991) Impact of elastic spheres with and without adhesion. Powder Technol 65:153–166CrossRef Thornton C, Yin KK (1991) Impact of elastic spheres with and without adhesion. Powder Technol 65:153–166CrossRef
10.
Zurück zum Zitat Tordesillas A, Walsh DC (2002) Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol 124(1–2):106–111CrossRef Tordesillas A, Walsh DC (2002) Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol 124(1–2):106–111CrossRef
11.
Zurück zum Zitat Zhou B, Huang R, Wang H, Wang J (2013) DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter 15(3):315–326CrossRef Zhou B, Huang R, Wang H, Wang J (2013) DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter 15(3):315–326CrossRef
12.
Zurück zum Zitat Vijay Anand D, Patnaik BSV, Vedantam S (2017) A dissipative particle dynamics study of a flexible filament in confined shear flow. Soft Matter 13(7):1472–1480PubMedCrossRef Vijay Anand D, Patnaik BSV, Vedantam S (2017) A dissipative particle dynamics study of a flexible filament in confined shear flow. Soft Matter 13(7):1472–1480PubMedCrossRef
13.
Zurück zum Zitat Lei L, Bertevas EL, Khoo BC, Phan-Thien N (2018) Many-body dissipative particle dynamics (MDPD) simulation of a pseudoplastic yield-stress fluid with surface tension in some flow processes. J Nonnewton Fluid Mech 260:163–174CrossRef Lei L, Bertevas EL, Khoo BC, Phan-Thien N (2018) Many-body dissipative particle dynamics (MDPD) simulation of a pseudoplastic yield-stress fluid with surface tension in some flow processes. J Nonnewton Fluid Mech 260:163–174CrossRef
14.
Zurück zum Zitat Ranjith SK, Patnaik BSV, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232(1):174–188CrossRef Ranjith SK, Patnaik BSV, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232(1):174–188CrossRef
15.
Zurück zum Zitat Wang G, Al-Ostaz A, Cheng AHD, Mantena PR (2009) Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci 44(4):1126–1134CrossRef Wang G, Al-Ostaz A, Cheng AHD, Mantena PR (2009) Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci 44(4):1126–1134CrossRef
16.
Zurück zum Zitat Chen H, Xu Y, Jiao Y, Liu Y (2016) A novel discrete computational tool for microstructure-sensitive mechanical analysis of composite materials. Mater Sci Eng A 659:234–241CrossRef Chen H, Xu Y, Jiao Y, Liu Y (2016) A novel discrete computational tool for microstructure-sensitive mechanical analysis of composite materials. Mater Sci Eng A 659:234–241CrossRef
17.
Zurück zum Zitat Omori T, Ishikawa T, Barthès-Biesel D, Salsac AV, Walter J, Imai Y, Yamaguchi T (2011) Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow. Phys Rev E 83(4):1–11CrossRef Omori T, Ishikawa T, Barthès-Biesel D, Salsac AV, Walter J, Imai Y, Yamaguchi T (2011) Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow. Phys Rev E 83(4):1–11CrossRef
18.
Zurück zum Zitat Monette L, Anderson MP (1994) Elastic and fracture properties of the two-dimensional. Modell Simul Mater Sci Eng 2(1):53–66CrossRef Monette L, Anderson MP (1994) Elastic and fracture properties of the two-dimensional. Modell Simul Mater Sci Eng 2(1):53–66CrossRef
19.
Zurück zum Zitat Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55(1):35CrossRef Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55(1):35CrossRef
20.
Zurück zum Zitat Nikolić M, Karavelić E, Ibrahimbegovic A, Miščević P (2018) Lattice element models and their peculiarities. Arch Comput Methods Eng 25(3):753–784CrossRef Nikolić M, Karavelić E, Ibrahimbegovic A, Miščević P (2018) Lattice element models and their peculiarities. Arch Comput Methods Eng 25(3):753–784CrossRef
21.
Zurück zum Zitat Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71(9):1–12CrossRef Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71(9):1–12CrossRef
22.
Zurück zum Zitat Schlangen E (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34(10):1131–1144CrossRef Schlangen E (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34(10):1131–1144CrossRef
23.
Zurück zum Zitat Uchimali M, Rao BC, Vedantam S (2020) Constitutively informed multi-body interactions for lattice particle models. Comput Methods Appl Mech Eng 366:113052CrossRef Uchimali M, Rao BC, Vedantam S (2020) Constitutively informed multi-body interactions for lattice particle models. Comput Methods Appl Mech Eng 366:113052CrossRef
24.
Zurück zum Zitat Sperling SO, Hoefnagels JPM, van den Broek K, Geers MGD (2022) A continuum consistent discrete particle method for continuum–discontinuum transitions and complex fracture problems. Comput Methods Appl Mech Eng 390:114460CrossRef Sperling SO, Hoefnagels JPM, van den Broek K, Geers MGD (2022) A continuum consistent discrete particle method for continuum–discontinuum transitions and complex fracture problems. Comput Methods Appl Mech Eng 390:114460CrossRef
25.
Zurück zum Zitat Müller I, Xu H (1991) On the pseudo-elastic hysteresis. Acta Metall Mater 39(3):263–271CrossRef Müller I, Xu H (1991) On the pseudo-elastic hysteresis. Acta Metall Mater 39(3):263–271CrossRef
26.
Zurück zum Zitat Puglisi G, Truskinovsky L (2000) Mechanics of a discrete chain with bi-stable elements. J Mech Phys Solids 48(1):1–27CrossRef Puglisi G, Truskinovsky L (2000) Mechanics of a discrete chain with bi-stable elements. J Mech Phys Solids 48(1):1–27CrossRef
27.
Zurück zum Zitat Müller I, Villaggio P (1977) A model for an elastic-plastic body. Arch Ration Mech Anal 65(1):25–46CrossRef Müller I, Villaggio P (1977) A model for an elastic-plastic body. Arch Ration Mech Anal 65(1):25–46CrossRef
28.
Zurück zum Zitat Salman OU, Truskinovsky L (2011) Minimal integer automaton behind crystal plasticity. Phys Rev Lett 106(17):175503PubMedCrossRef Salman OU, Truskinovsky L (2011) Minimal integer automaton behind crystal plasticity. Phys Rev Lett 106(17):175503PubMedCrossRef
29.
Zurück zum Zitat Ben-Shmuel Y, Altus E (2017) Modeling plasticity by non-continuous deformation. Comput Particle Mech 4(4):487–501CrossRef Ben-Shmuel Y, Altus E (2017) Modeling plasticity by non-continuous deformation. Comput Particle Mech 4(4):487–501CrossRef
30.
Zurück zum Zitat Sharma BL, Vainchtein A (2007) Quasistatic propagation of steps along a phase boundary. Continuum Mech Thermodyn 19:347–377CrossRef Sharma BL, Vainchtein A (2007) Quasistatic propagation of steps along a phase boundary. Continuum Mech Thermodyn 19:347–377CrossRef
31.
Zurück zum Zitat Benichou I, Faran E, Shilo D, Givli S (2013) Application of a bi-stable chain model for the analysis of jerky twin boundary motion in NiMnGa. Appl Phys Lett 102(1):11912CrossRef Benichou I, Faran E, Shilo D, Givli S (2013) Application of a bi-stable chain model for the analysis of jerky twin boundary motion in NiMnGa. Appl Phys Lett 102(1):11912CrossRef
32.
Zurück zum Zitat Slepyan LI (1981) Dynamics of a crack in a lattice. Dokl Akad Nauk SSSR 258(3):561–564 Slepyan LI (1981) Dynamics of a crack in a lattice. Dokl Akad Nauk SSSR 258(3):561–564
33.
Zurück zum Zitat Braides A, Dal Maso G, Garroni A (1999) Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch Ration Mech Anal 146:23–58CrossRef Braides A, Dal Maso G, Garroni A (1999) Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch Ration Mech Anal 146:23–58CrossRef
34.
Zurück zum Zitat Benichou I, Givli S (2015) Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys Rev Lett 114(9):95504CrossRef Benichou I, Givli S (2015) Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys Rev Lett 114(9):95504CrossRef
35.
Zurück zum Zitat Elias-Mordechai M, Chetrit E, Berkovich R (2020) Interplay between viscoelasticity and force rate affects sequential unfolding in polyproteins pulled at constant velocity. Macromolecules 53(8):3021–3029PubMedPubMedCentralCrossRef Elias-Mordechai M, Chetrit E, Berkovich R (2020) Interplay between viscoelasticity and force rate affects sequential unfolding in polyproteins pulled at constant velocity. Macromolecules 53(8):3021–3029PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Fraternali F, Blesgen T, Amendola A, Daraio C (2011) Multiscale mass-spring models of carbon nanotube foams. J Mech Phys Solids 59(1):89–102CrossRef Fraternali F, Blesgen T, Amendola A, Daraio C (2011) Multiscale mass-spring models of carbon nanotube foams. J Mech Phys Solids 59(1):89–102CrossRef
37.
Zurück zum Zitat Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935PubMedCrossRef Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935PubMedCrossRef
38.
Zurück zum Zitat Restrepo D, Mankame ND, Zavattieri PD (2015) Phase transforming cellular materials. Extreme Mech Lett 4:52–60CrossRef Restrepo D, Mankame ND, Zavattieri PD (2015) Phase transforming cellular materials. Extreme Mech Lett 4:52–60CrossRef
39.
Zurück zum Zitat Truskinovsky L, Vainchtein A (2006) Kinetics of martensitic phase transitions: lattice model. SIAM J Appl Math 66(2):533–553CrossRef Truskinovsky L, Vainchtein A (2006) Kinetics of martensitic phase transitions: lattice model. SIAM J Appl Math 66(2):533–553CrossRef
40.
Zurück zum Zitat Atkinson W, Cabrera N (1965) Motion of a Frenkel-Kontorowa dislocation in a one-dimensional crystal. Phys Rev 138(3A):763–766CrossRef Atkinson W, Cabrera N (1965) Motion of a Frenkel-Kontorowa dislocation in a one-dimensional crystal. Phys Rev 138(3A):763–766CrossRef
41.
Zurück zum Zitat Charlotte M, Truskinovsky L (2002) Linear elastic chain with a hyper-pre-stress. J Mech Phys Solids 50(2):217–251CrossRef Charlotte M, Truskinovsky L (2002) Linear elastic chain with a hyper-pre-stress. J Mech Phys Solids 50(2):217–251CrossRef
42.
Zurück zum Zitat Friesecke G, Theil F (2002) Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J Nonlinear Sci 12(5):445–478CrossRef Friesecke G, Theil F (2002) Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J Nonlinear Sci 12(5):445–478CrossRef
43.
Zurück zum Zitat Vainchtein A (2010) The role of spinodal region in the kinetics of lattice phase transitions. J Mech Phys Solids 58(2):227–240CrossRef Vainchtein A (2010) The role of spinodal region in the kinetics of lattice phase transitions. J Mech Phys Solids 58(2):227–240CrossRef
44.
Zurück zum Zitat Puglisi G, Truskinovsky L (2002) Rate independent hysteresis in a bi-stable chain. J Mech Phys Solids 50(2):165–187CrossRef Puglisi G, Truskinovsky L (2002) Rate independent hysteresis in a bi-stable chain. J Mech Phys Solids 50(2):165–187CrossRef
45.
Zurück zum Zitat Seelecke WBAS (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30:1969–2012CrossRef Seelecke WBAS (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30:1969–2012CrossRef
46.
Zurück zum Zitat Zhen Y, Vainchtein A (2008) Dynamics of steps along a martensitic phase boundary I. Semi-analytical solution. J Mech Phys Solids 56(2):496–520CrossRef Zhen Y, Vainchtein A (2008) Dynamics of steps along a martensitic phase boundary I. Semi-analytical solution. J Mech Phys Solids 56(2):496–520CrossRef
47.
Zurück zum Zitat Cherkaev A, Cherkaev E, Slepyan L (2005) Transition waves in bistable structures. I. Delocalization of damage. J Mech Phys Solids 53(2):383–405CrossRef Cherkaev A, Cherkaev E, Slepyan L (2005) Transition waves in bistable structures. I. Delocalization of damage. J Mech Phys Solids 53(2):383–405CrossRef
48.
Zurück zum Zitat Katz S, Givli S (2020) Boomerons in a 1-D lattice with only nearest-neighbor interactions. Europhys Lett 131(6):64002CrossRef Katz S, Givli S (2020) Boomerons in a 1-D lattice with only nearest-neighbor interactions. Europhys Lett 131(6):64002CrossRef
49.
Zurück zum Zitat Katz S, Givli S (2018) Solitary waves in a bistable lattice. Extreme Mech Lett 22:106–111CrossRef Katz S, Givli S (2018) Solitary waves in a bistable lattice. Extreme Mech Lett 22:106–111CrossRef
50.
Zurück zum Zitat Katz S, Givli S (2019) Solitary waves in a nonintegrable chain with double-well potentials. Phys Rev E 100(3):32209CrossRef Katz S, Givli S (2019) Solitary waves in a nonintegrable chain with double-well potentials. Phys Rev E 100(3):32209CrossRef
51.
Zurück zum Zitat Truskinovsky L, Vainchtein A (2004) The origin of nucleation peak in transformational plasticity. J Mech Phys Solids 52(6):1421–1446CrossRef Truskinovsky L, Vainchtein A (2004) The origin of nucleation peak in transformational plasticity. J Mech Phys Solids 52(6):1421–1446CrossRef
52.
Zurück zum Zitat Vedantam S, Mohanraj S (2009) Structural phase transitions in a discrete one-dimensional chain. Int J Appl Mech 01(03):545–556CrossRef Vedantam S, Mohanraj S (2009) Structural phase transitions in a discrete one-dimensional chain. Int J Appl Mech 01(03):545–556CrossRef
53.
Zurück zum Zitat Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordCrossRef Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, OxfordCrossRef
54.
Zurück zum Zitat Ericksen JL (1986) Constitutive theory for some constrained elastic crystals. Int J Solids Struct 22(9):951–964CrossRef Ericksen JL (1986) Constitutive theory for some constrained elastic crystals. Int J Solids Struct 22(9):951–964CrossRef
55.
Zurück zum Zitat Vedantam S, Abeyaratne R (2005) A Helmholtz free-energy function for a Cu-Al-Ni shape memory alloy. Int J Non-Linear Mech 40(2–3):177–193CrossRef Vedantam S, Abeyaratne R (2005) A Helmholtz free-energy function for a Cu-Al-Ni shape memory alloy. Int J Non-Linear Mech 40(2–3):177–193CrossRef
56.
Zurück zum Zitat Uchimali M, Rao BC, Vedantam S (2021) Modeling size and orientation effects on the morphology of microstructure formed in martensitic phase transformations using a novel discrete particle model. Acta Mater 205:116528CrossRef Uchimali M, Rao BC, Vedantam S (2021) Modeling size and orientation effects on the morphology of microstructure formed in martensitic phase transformations using a novel discrete particle model. Acta Mater 205:116528CrossRef
57.
Zurück zum Zitat Shchyglo O, Salman U, Finel A (2012) Martensitic phase transformations in Ni-Ti-based shape memory alloys: the Landau theory. Acta Mater 60(19):6784–6792CrossRef Shchyglo O, Salman U, Finel A (2012) Martensitic phase transformations in Ni-Ti-based shape memory alloys: the Landau theory. Acta Mater 60(19):6784–6792CrossRef
58.
Zurück zum Zitat Fang D, Lu W, Hwang KC (1998) Pseudoelastic behavior of CuAlNi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef Fang D, Lu W, Hwang KC (1998) Pseudoelastic behavior of CuAlNi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef
59.
Zurück zum Zitat Ananchaperumal V, Vedantam S, Uchimali M (2022) A discrete particle model study of the effect of temperature and geometry on the pseudoelastic response of shape memory alloys. Int J Mech Sci 230:107527CrossRef Ananchaperumal V, Vedantam S, Uchimali M (2022) A discrete particle model study of the effect of temperature and geometry on the pseudoelastic response of shape memory alloys. Int J Mech Sci 230:107527CrossRef
60.
Zurück zum Zitat Uchimali M (2022) Effect of stress on the thermal hysteresis of martensitic transformations—a continuum based particle dynamics model. Mech Adv Mater Struct 29(25):3794–3803CrossRef Uchimali M (2022) Effect of stress on the thermal hysteresis of martensitic transformations—a continuum based particle dynamics model. Mech Adv Mater Struct 29(25):3794–3803CrossRef
61.
Zurück zum Zitat Ballew W, Seelecke S (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30(13):1969–2012CrossRef Ballew W, Seelecke S (2019) Mesoscopic free energy as a framework for modeling shape memory alloys. J Intell Mater Syst Struct 30(13):1969–2012CrossRef
62.
Zurück zum Zitat Iaparova E, Heller L, Tyc O, Sittner P (2023) Thermally induced reorientation and plastic deformation of B19’ monoclinic martensite in nanocrystalline NiTi wires. Acta Mater 242:118477CrossRef Iaparova E, Heller L, Tyc O, Sittner P (2023) Thermally induced reorientation and plastic deformation of B19’ monoclinic martensite in nanocrystalline NiTi wires. Acta Mater 242:118477CrossRef
63.
Zurück zum Zitat Uchimali M, Vedantam S (2022) Modeling stress–strain response of shape memory alloys during reorientation of self-accommodated martensites with different morphologies. Mech Adv Mater Struct 29(27):6948–6956CrossRef Uchimali M, Vedantam S (2022) Modeling stress–strain response of shape memory alloys during reorientation of self-accommodated martensites with different morphologies. Mech Adv Mater Struct 29(27):6948–6956CrossRef
64.
Zurück zum Zitat Bray DW, Howe JM (1996) High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co-31.8 wt pct Ni alloy: Part 1. Plate interfaces and growth ledges. Metall Mater Trans A 27:3362–3370CrossRef Bray DW, Howe JM (1996) High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co-31.8 wt pct Ni alloy: Part 1. Plate interfaces and growth ledges. Metall Mater Trans A 27:3362–3370CrossRef
65.
Zurück zum Zitat Vedantam S (2005) A nonstandard finite difference scheme for a strain-gradient theory. Comput Mech 35:369–375CrossRef Vedantam S (2005) A nonstandard finite difference scheme for a strain-gradient theory. Comput Mech 35:369–375CrossRef
Metadaten
Titel
A Brief Review on Discrete Modelling of Martensitic Phase Transformations
verfasst von
Mahendaran Uchimali
P. Sittner
Publikationsdatum
20.11.2023
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2024
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-023-00466-6

Weitere Artikel der Ausgabe 1/2024

Shape Memory and Superelasticity 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.