Skip to main content
Top
Published in: Shape Memory and Superelasticity 1/2024

12-02-2024 | ORIGINAL RESEARCH ARTICLE

Ultra-High Temperature Shape Memory Behavior in Ni–Ti–Hf Alloys

Authors: O. Benafan, G. S. Bigelow, A. Garg, L. G. Wilson, R. B. Rogers, E. J. Young-Dohe, D. F. Johnson, D. A. Scheiman, J. W. Lawson, Zhigang Wu

Published in: Shape Memory and Superelasticity | Issue 1/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shape memory behavior in stoichiometric Ni–Hf–Ti shape memory alloys with high Hf was evaluated. Five alloy compositions with a hafnium content from 30 to 50 at.% were arc melted, homogenized, and tested to reveal microstructure and shape memory properties. Transformation temperatures increased linearly with Hf addition, reaching a maximum austenite finish temperature of 1190 °C at 50Hf, measured using differential scanning calorimetry (DSC). The low temperature stable microstructures were composed of a majority B33 orthorhombic phase, with traces of B19′ monoclinic structure below the martensite finish temperature, as revealed by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). These microstructures convert to a B2 cubic structure at higher temperature. Macroscopically, specimens were tested isothermally at room temperature, and endured stresses as high as 1 GPa in compression. Strain recovery decreased from nearly 100% recovery in the 30Hf alloy, to nearly 0% at 50Hf alloy, as plasticity mechanisms dominated at high temperatures in the higher Hf alloys. Uniaxial constant-force thermal cycling (UCFTC) experiments revealed limited work output at high temperatures due to creep-dominant mechanisms simultaneously occurring during the phase transformation process.
Literature
1.
go back to reference Benafan O, Bigelow GS, Garg A, Noebe RD, Gaydosh DJ, Rogers RB (2021) Processing and scalability of NiTiHf high-temperature shape memory alloys. Shape Mem Superelast 7(1):109–165CrossRef Benafan O, Bigelow GS, Garg A, Noebe RD, Gaydosh DJ, Rogers RB (2021) Processing and scalability of NiTiHf high-temperature shape memory alloys. Shape Mem Superelast 7(1):109–165CrossRef
2.
go back to reference Yamabe-Mitarai Y (2020) TiPd-and TiPt-based high-temperature shape memory alloys: a review on recent advances. Metals 10(11):1531CrossRef Yamabe-Mitarai Y (2020) TiPd-and TiPt-based high-temperature shape memory alloys: a review on recent advances. Metals 10(11):1531CrossRef
3.
go back to reference Chastaing K, Denquin A, Portier R, Vermaut P (2008) High-temperature shape memory alloys based on the RuNb system. Mater Sci Eng A 481:702–706CrossRef Chastaing K, Denquin A, Portier R, Vermaut P (2008) High-temperature shape memory alloys based on the RuNb system. Mater Sci Eng A 481:702–706CrossRef
4.
go back to reference Canadinc D, Trehern W, Ma J, Karaman I, Sun F, Chaudhry Z (2019) Ultra-high temperature multi-component shape memory alloys. Scripta Mater 158:83–87CrossRef Canadinc D, Trehern W, Ma J, Karaman I, Sun F, Chaudhry Z (2019) Ultra-high temperature multi-component shape memory alloys. Scripta Mater 158:83–87CrossRef
5.
go back to reference AbuJudom DN, Thoma PE, Kao MY, Angst DR (1992) High transformation temperature shape memory alloy, U.S. Patent No. 5,114,504 AbuJudom DN, Thoma PE, Kao MY, Angst DR (1992) High transformation temperature shape memory alloy, U.S. Patent No. 5,114,504
6.
go back to reference Angst DR, Thoma PE, Kao MY (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx. Shape memory alloys. J Phys IV France 05(C8):C8-747-C8-752CrossRef Angst DR, Thoma PE, Kao MY (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx. Shape memory alloys. J Phys IV France 05(C8):C8-747-C8-752CrossRef
7.
go back to reference Pu ZJ, Tseng HK, Wu KH (1994) Innovative system of high-temperature shape memory alloys, Proc. SPIE 2189, Smart Structures and Materials 1994: Smart Materials, pp. 289–297. Pu ZJ, Tseng HK, Wu KH (1994) Innovative system of high-temperature shape memory alloys, Proc. SPIE 2189, Smart Structures and Materials 1994: Smart Materials, pp. 289–297.
8.
go back to reference Zhu Y, Pu Z, Li C, Wu K (1994) Stability of NiTi-Pd and NiTi-Hf high temperature shape memory alloys. Florida International Univ, Miami Zhu Y, Pu Z, Li C, Wu K (1994) Stability of NiTi-Pd and NiTi-Hf high temperature shape memory alloys. Florida International Univ, Miami
9.
go back to reference Wu KH, Pu ZJ, Tseng HK, Biancaniello FS (1994) The Shape Memory Effect of the NiTi-Hf High Temperature Shape Memory Alloy, Proc. The 1st International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, pp. 61–66. Wu KH, Pu ZJ, Tseng HK, Biancaniello FS (1994) The Shape Memory Effect of the NiTi-Hf High Temperature Shape Memory Alloy, Proc. The 1st International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, pp. 61–66.
10.
go back to reference Potapov PL, Shelyakov AV, Gulyaev AA, Svistunov EL, Matveeva NM, Hodgson D (1997) Effect of Hf on the structure of Ni-Ti martensitic alloys. Mater Lett 32(4):247–250CrossRef Potapov PL, Shelyakov AV, Gulyaev AA, Svistunov EL, Matveeva NM, Hodgson D (1997) Effect of Hf on the structure of Ni-Ti martensitic alloys. Mater Lett 32(4):247–250CrossRef
11.
go back to reference Gu H, Leung K, Chung C (1998) Growth of high-temperature NiTi1–x Hfx shape memory alloy thin films by laser ablation of composite targets. J Vac Sci Technol A 16(6):3420–3422CrossRef Gu H, Leung K, Chung C (1998) Growth of high-temperature NiTi1–x Hfx shape memory alloy thin films by laser ablation of composite targets. J Vac Sci Technol A 16(6):3420–3422CrossRef
12.
go back to reference Kang S-H, Nam T-H (2001) Crystal structure of (TiHf) Ni phase formed in a 20Ti− 50Ni− 30Hf (at.%) alloy. Metals Mater Int 7(5):443–446CrossRef Kang S-H, Nam T-H (2001) Crystal structure of (TiHf) Ni phase formed in a 20Ti− 50Ni− 30Hf (at.%) alloy. Metals Mater Int 7(5):443–446CrossRef
13.
go back to reference Sanjabi S, Cao Y, Barber Z (2005) Multi-target sputter deposition of Ni50Ti50− xHfx shape memory thin films for high temperature microactuator application. Sens Actuators A 121(2):543–548CrossRef Sanjabi S, Cao Y, Barber Z (2005) Multi-target sputter deposition of Ni50Ti50− xHfx shape memory thin films for high temperature microactuator application. Sens Actuators A 121(2):543–548CrossRef
14.
go back to reference Muir Wood AJ, Sanjabi S, Fu YQ, Barber ZH, Clyne TW (2008) Nanoindentation of binary and ternary Ni–Ti-based shape memory alloy thin films. Surf Coat Technol 202(13):3115–3120CrossRef Muir Wood AJ, Sanjabi S, Fu YQ, Barber ZH, Clyne TW (2008) Nanoindentation of binary and ternary Ni–Ti-based shape memory alloy thin films. Surf Coat Technol 202(13):3115–3120CrossRef
15.
go back to reference Tong Y, Liu Y, Miao J (2008) Phase transformation in NiTiHf shape memory alloy thin films. Thin Solid Films 516(16):5393–5396CrossRef Tong Y, Liu Y, Miao J (2008) Phase transformation in NiTiHf shape memory alloy thin films. Thin Solid Films 516(16):5393–5396CrossRef
16.
go back to reference Rao J, Roberts T, Lawson K, Nicholls J (2010) Nickel titanium and nickel titanium hafnium shape memory alloy thin films. Surf Coat Technol 204(15):2331–2336CrossRef Rao J, Roberts T, Lawson K, Nicholls J (2010) Nickel titanium and nickel titanium hafnium shape memory alloy thin films. Surf Coat Technol 204(15):2331–2336CrossRef
17.
go back to reference Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca H, Noebe R (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61(16):6191–6206CrossRef Santamarta R, Arróyave R, Pons J, Evirgen A, Karaman I, Karaca H, Noebe R (2013) TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Mater 61(16):6191–6206CrossRef
18.
go back to reference Patriarca L, Sehitoglu H (2015) High-temperature superelasticity of Ni50. 6Ti24. 4Hf25. 0 shape memory alloy. Scripta Mater 101:12–15CrossRef Patriarca L, Sehitoglu H (2015) High-temperature superelasticity of Ni50. 6Ti24. 4Hf25. 0 shape memory alloy. Scripta Mater 101:12–15CrossRef
19.
go back to reference Patriarca L, Sehitoglu H, Panchenko EY, Chumlyakov Y (2016) High-temperature functional behavior of single crystal Ni51. 2Ti23. 4Hf25. 4 shape memory alloy. Acta Mater 106:333–343CrossRef Patriarca L, Sehitoglu H, Panchenko EY, Chumlyakov Y (2016) High-temperature functional behavior of single crystal Ni51. 2Ti23. 4Hf25. 4 shape memory alloy. Acta Mater 106:333–343CrossRef
20.
go back to reference Abuzaid W, Sehitoglu H (2017) Functional fatigue of Ni50. 3Ti25Hf24.7–Heterogeneities and evolution of local transformation strains. Mater Sci Eng A 696:482–492CrossRef Abuzaid W, Sehitoglu H (2017) Functional fatigue of Ni50. 3Ti25Hf24.7–Heterogeneities and evolution of local transformation strains. Mater Sci Eng A 696:482–492CrossRef
21.
go back to reference Sehitoglu H, Wu Y, Patriarca L (2017) Shape memory functionality under multi-cycles in NiTiHf. Scripta Mater 129:11–15CrossRef Sehitoglu H, Wu Y, Patriarca L (2017) Shape memory functionality under multi-cycles in NiTiHf. Scripta Mater 129:11–15CrossRef
22.
go back to reference Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem Superelast 2(1):62–79CrossRef Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem Superelast 2(1):62–79CrossRef
23.
go back to reference Umale T, Salas D, Tomes B, Arroyave R, Karaman I (2019) The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scripta Mater 161:78–83CrossRef Umale T, Salas D, Tomes B, Arroyave R, Karaman I (2019) The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys. Scripta Mater 161:78–83CrossRef
24.
go back to reference Yeremenko V, Semenova E, Tretyachenko L, Petyukh V (1993) Constitution of the Hf-Ni system up to 50.at% Ni. J Alloys Compds 191(1):117–119CrossRef Yeremenko V, Semenova E, Tretyachenko L, Petyukh V (1993) Constitution of the Hf-Ni system up to 50.at% Ni. J Alloys Compds 191(1):117–119CrossRef
25.
go back to reference Gupta K (2001) The Hf-Ni-Ti (hafnium-nickel-titanium) system. J Phase Equilibr 22(1):69–72CrossRef Gupta K (2001) The Hf-Ni-Ti (hafnium-nickel-titanium) system. J Phase Equilibr 22(1):69–72CrossRef
26.
go back to reference Cacciamani G, Riani P, Valenza F (2011) Equilibrium between MB2 (M= Ti, Zr, Hf) UHTC and Ni: a thermodynamic database for the B-Hf–Ni–Ti–Zr system. Calphad 35(4):601–619CrossRef Cacciamani G, Riani P, Valenza F (2011) Equilibrium between MB2 (M= Ti, Zr, Hf) UHTC and Ni: a thermodynamic database for the B-Hf–Ni–Ti–Zr system. Calphad 35(4):601–619CrossRef
27.
go back to reference Nash P, Nash A (1983) The Hf-Ni (hafnium-nickel) system. Bull Alloy Phase Diagr 4(3):250–253CrossRef Nash P, Nash A (1983) The Hf-Ni (hafnium-nickel) system. Bull Alloy Phase Diagr 4(3):250–253CrossRef
28.
go back to reference Semenova EL (2001) The solidus surface in the Ti-Ni-Hf system in the Ti-TiNi-HfNi-Hf region. Powder Metall Met Ceram 40(7):414–425CrossRef Semenova EL (2001) The solidus surface in the Ti-Ni-Hf system in the Ti-TiNi-HfNi-Hf region. Powder Metall Met Ceram 40(7):414–425CrossRef
29.
go back to reference Ross AJ, Gheno T, Ray PK, Kramer MJ, Liu XL, Lindwall G, Zhou B, Shang SL, Gleeson B, Liu ZK (2018) A first-principles based description of the Hf-Ni system supported by high-temperature synchrotron experiments. Thermochim Acta 668:142–151CrossRef Ross AJ, Gheno T, Ray PK, Kramer MJ, Liu XL, Lindwall G, Zhou B, Shang SL, Gleeson B, Liu ZK (2018) A first-principles based description of the Hf-Ni system supported by high-temperature synchrotron experiments. Thermochim Acta 668:142–151CrossRef
30.
go back to reference Liu J, Zhu L, Huang X, Cai G, Jin Z (2017) Investigation of the phase equilibria in Ti-Ni-Hf system using diffusion triples and equilibrated alloys. Calphad 58:160–168CrossRef Liu J, Zhu L, Huang X, Cai G, Jin Z (2017) Investigation of the phase equilibria in Ti-Ni-Hf system using diffusion triples and equilibrated alloys. Calphad 58:160–168CrossRef
31.
go back to reference ASTM E3097–17, Standard Test Method for Mechanical Uniaxial Constant Force Thermal Cycling of Shape Memory Alloys, ASTM International, West Conshohocken, PA, 2017, www.astm.org. ASTM E3097–17, Standard Test Method for Mechanical Uniaxial Constant Force Thermal Cycling of Shape Memory Alloys, ASTM International, West Conshohocken, PA, 2017, www.​astm.​org.
32.
go back to reference ASTM E3098–17, Standard Test Method for Mechanical Uniaxial Pre-strain and Thermal Free Recovery of Shape Memory Alloys, ASTM International, West Conshohocken, PA, 2017, www.astm.org. ASTM E3098–17, Standard Test Method for Mechanical Uniaxial Pre-strain and Thermal Free Recovery of Shape Memory Alloys, ASTM International, West Conshohocken, PA, 2017, www.​astm.​org.
33.
go back to reference Zunger A, Wei S-H, Ferreira L, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65(3):353PubMedCrossRef Zunger A, Wei S-H, Ferreira L, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65(3):353PubMedCrossRef
34.
go back to reference Van de Walle A, Tiwary P, De Jong M, Olmsted D, Asta M, Dick A, Shin D, Wang Y, Chen L-Q, Liu Z-K (2013) Efficient stochastic generation of special quasirandom structures. Calphad 42:13–18CrossRef Van de Walle A, Tiwary P, De Jong M, Olmsted D, Asta M, Dick A, Shin D, Wang Y, Chen L-Q, Liu Z-K (2013) Efficient stochastic generation of special quasirandom structures. Calphad 42:13–18CrossRef
35.
go back to reference Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558CrossRef
36.
go back to reference Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251CrossRef Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251CrossRef
37.
go back to reference Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef
38.
go back to reference Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef
39.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865PubMedCrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865PubMedCrossRef
40.
41.
go back to reference Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758CrossRef
42.
go back to reference Wu Z, Lawson JW (2022) Theoretical investigation of phase transitions in the shape memory alloy NiTi. Phys Rev B 106(14):L140102CrossRef Wu Z, Lawson JW (2022) Theoretical investigation of phase transitions in the shape memory alloy NiTi. Phys Rev B 106(14):L140102CrossRef
43.
go back to reference ASTM F2004–17, Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, ASTM International, West Conshohocken, PA, 2017, www.astm.org, 2017. ASTM F2004–17, Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, ASTM International, West Conshohocken, PA, 2017, www.​astm.​org, 2017.
44.
go back to reference Wolten G (1963) Diffusionless phase transformations in zirconia and hafnia. J Am Ceram Soc 46(9):418–422CrossRef Wolten G (1963) Diffusionless phase transformations in zirconia and hafnia. J Am Ceram Soc 46(9):418–422CrossRef
45.
go back to reference Benafan O, Bigelow GS, Young AW (2020) Shape memory materials database tool—a compendium of functional data for shape memory materials. Adv Eng Mater 22(7):1901370CrossRef Benafan O, Bigelow GS, Young AW (2020) Shape memory materials database tool—a compendium of functional data for shape memory materials. Adv Eng Mater 22(7):1901370CrossRef
46.
go back to reference Caltagirone PE, Benafan O (2023) Shape memory materials analysis and research tool (SM2ART): finding data anomalies and trends. Shap Mem Superelasticity 9:558–584CrossRef Caltagirone PE, Benafan O (2023) Shape memory materials analysis and research tool (SM2ART): finding data anomalies and trends. Shap Mem Superelasticity 9:558–584CrossRef
47.
go back to reference Li K, Zheng W (2023) Thermodynamic modeling of the Ni–Ti–Hf system. Calphad 81:102558CrossRef Li K, Zheng W (2023) Thermodynamic modeling of the Ni–Ti–Hf system. Calphad 81:102558CrossRef
48.
go back to reference Raj S, Noebe R (2013) Low temperature creep of hot-extruded near-stoichiometric NiTi shape memory alloy part II: effect of thermal cycling. Mater Sci Eng A 581:154–163CrossRef Raj S, Noebe R (2013) Low temperature creep of hot-extruded near-stoichiometric NiTi shape memory alloy part II: effect of thermal cycling. Mater Sci Eng A 581:154–163CrossRef
49.
go back to reference Kumar PK, Desai U, Monroe JA, Lagoudas DC, Karaman I, Bigelow G, Noebe RD (2011) Experimental investigation of simultaneous creep, plasticity and transformation of Ti50. 5Pd30Ni19. 5 high temperature shape memory alloy during cyclic actuation. Mater Sci Eng A 530:117–127CrossRef Kumar PK, Desai U, Monroe JA, Lagoudas DC, Karaman I, Bigelow G, Noebe RD (2011) Experimental investigation of simultaneous creep, plasticity and transformation of Ti50. 5Pd30Ni19. 5 high temperature shape memory alloy during cyclic actuation. Mater Sci Eng A 530:117–127CrossRef
50.
go back to reference Chaugule PS, Benafan O, le Graverend J-B (2021) Phase transformation and viscoplasticity coupling in polycrystalline nickel-titanium-hafnium high-temperature shape memory alloys. Acta Mater 221:117381CrossRef Chaugule PS, Benafan O, le Graverend J-B (2021) Phase transformation and viscoplasticity coupling in polycrystalline nickel-titanium-hafnium high-temperature shape memory alloys. Acta Mater 221:117381CrossRef
Metadata
Title
Ultra-High Temperature Shape Memory Behavior in Ni–Ti–Hf Alloys
Authors
O. Benafan
G. S. Bigelow
A. Garg
L. G. Wilson
R. B. Rogers
E. J. Young-Dohe
D. F. Johnson
D. A. Scheiman
J. W. Lawson
Zhigang Wu
Publication date
12-02-2024
Publisher
Springer US
Published in
Shape Memory and Superelasticity / Issue 1/2024
Print ISSN: 2199-384X
Electronic ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-024-00473-1

Other articles of this Issue 1/2024

Shape Memory and Superelasticity 1/2024 Go to the issue

Premium Partners