Skip to main content
Top
Published in: Journal of Scientific Computing 3/2014

01-12-2014

A Comparison Between the Interpolated Bounce-Back Scheme and the Immersed Boundary Method to Treat Solid Boundary Conditions for Laminar Flows in the Lattice Boltzmann Framework

Authors: Alessandro De Rosis, Stefano Ubertini, Francesco Ubertini

Published in: Journal of Scientific Computing | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the interpolated bounce-back scheme and the immersed boundary method are compared in order to handle solid boundary conditions in the lattice Boltzmann method. These two approaches are numerically investigated in two test cases: a rigid fixed cylinder invested by an incoming viscous fluid and an oscillating cylinder in a calm viscous fluid. Findings in terms of velocity profiles in several cross sections are shown. Differences and similarities between the two methods are discussed, by emphasizing pros and cons in terms of stability and computational effort of the numerical algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon (2001) Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon (2001)
2.
go back to reference Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. Lett. 45(8), R5339–R5342 (1992) Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. Lett. 45(8), R5339–R5342 (1992)
3.
go back to reference Falcucci, G., Ubertini, S., Biscarini, C., Di Francesco, S., Chiappini, D., Palpacelli, S., De Maio, A., Succi, S.: Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9(2), 269–296 (2011) Falcucci, G., Ubertini, S., Biscarini, C., Di Francesco, S., Chiappini, D., Palpacelli, S., De Maio, A., Succi, S.: Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9(2), 269–296 (2011)
4.
go back to reference Zhang, J., Yan, G.: A lattice Boltzmann model for the reaction–diffusion equations with higher-order accuracy. J. Sci. Comput. 52(1), 1–16 (2012)MathSciNetCrossRefMATH Zhang, J., Yan, G.: A lattice Boltzmann model for the reaction–diffusion equations with higher-order accuracy. J. Sci. Comput. 52(1), 1–16 (2012)MathSciNetCrossRefMATH
5.
go back to reference Wang, H., Yan, G., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the laplace equation and the poisson equation. J. Sci. Comput. 46(3), 470–484 (2011)MathSciNetCrossRefMATH Wang, H., Yan, G., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the laplace equation and the poisson equation. J. Sci. Comput. 46(3), 470–484 (2011)MathSciNetCrossRefMATH
6.
go back to reference De Rosis, A.: Analysis of blood flow in deformable vessels via a lattice Boltzmann approach. Int. J. Mod. Phys. C 25(4), 1350107–1350125 (2013) De Rosis, A.: Analysis of blood flow in deformable vessels via a lattice Boltzmann approach. Int. J. Mod. Phys. C 25(4), 1350107–1350125 (2013)
7.
go back to reference Falcucci, G., Aureli, M., Ubertini, S., Porfiri, M.: Transverse harmonic oscillations of laminae in viscous fluids: a lattice Boltzmann study. Philos. Trans. R. Soc. Ser. A 369(1945), 2456–2466 (2011)MathSciNetCrossRefMATH Falcucci, G., Aureli, M., Ubertini, S., Porfiri, M.: Transverse harmonic oscillations of laminae in viscous fluids: a lattice Boltzmann study. Philos. Trans. R. Soc. Ser. A 369(1945), 2456–2466 (2011)MathSciNetCrossRefMATH
8.
go back to reference De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F.: Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun. Comput. Phys. 13(3), 823–834 (2012) De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F.: Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun. Comput. Phys. 13(3), 823–834 (2012)
9.
go back to reference De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F.: A coupled lattice Boltzmann-finite element approach for two-dimensional fluidstructure interaction. Comput. Fluids 86, 558–568 (2013)MathSciNetCrossRefMATH De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F.: A coupled lattice Boltzmann-finite element approach for two-dimensional fluidstructure interaction. Comput. Fluids 86, 558–568 (2013)MathSciNetCrossRefMATH
10.
go back to reference De Rosis, A.: Fluid-Structure Interaction by a Coupled Lattice Boltzmann-Finite Element Approach. Ph.D. thesis, University of Bologna (2013) De Rosis, A.: Fluid-Structure Interaction by a Coupled Lattice Boltzmann-Finite Element Approach. Ph.D. thesis, University of Bologna (2013)
11.
go back to reference De Rosis, A., Ubertini, F., Ubertini, S.: A partitioned approach for two-dimensional fluid-structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary. J. Fluids Struct. (2014). doi:10.1016/j.jfluidstructs.2013.12.009 De Rosis, A., Ubertini, F., Ubertini, S.: A partitioned approach for two-dimensional fluid-structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary. J. Fluids Struct. (2014). doi:10.​1016/​j.​jfluidstructs.​2013.​12.​009
13.
go back to reference Filippova, O., Hänel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26(7), 697–712 (1997)CrossRefMATH Filippova, O., Hänel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26(7), 697–712 (1997)CrossRefMATH
15.
go back to reference Mei, R., Yu, D., Shyy, W., Luo, L.S.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. Lett. E 65(4), 041203 (2002)CrossRef Mei, R., Yu, D., Shyy, W., Luo, L.S.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. Lett. E 65(4), 041203 (2002)CrossRef
17.
go back to reference Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)MathSciNetCrossRefMATH Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)MathSciNetCrossRefMATH
18.
go back to reference Bhatnagar, P., Gross, E., Krook, M.: A model for collisional processes in gases: small amplitude processes in charged and neutral one-component system. Phys. Rev. Lett. 94(3), 515–523 (1954) Bhatnagar, P., Gross, E., Krook, M.: A model for collisional processes in gases: small amplitude processes in charged and neutral one-component system. Phys. Rev. Lett. 94(3), 515–523 (1954)
19.
go back to reference Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)CrossRef Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)CrossRef
20.
go back to reference Wu, J., Shu, C.: Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J. Comput. Phys. 228(6), 1963–1979 (2009)MathSciNetCrossRefMATH Wu, J., Shu, C.: Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J. Comput. Phys. 228(6), 1963–1979 (2009)MathSciNetCrossRefMATH
21.
go back to reference Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn.: An Int. J. 8(1/2/3/4), 3 (2008) Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn.: An Int. J. 8(1/2/3/4), 3 (2008)
22.
go back to reference Dazhi, Yu., Mei, Renwei, Luo, Li-Shi, Shyy, Wei: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39(5), 329–367 (2003)CrossRef Dazhi, Yu., Mei, Renwei, Luo, Li-Shi, Shyy, Wei: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39(5), 329–367 (2003)CrossRef
24.
go back to reference Mei, R., Luo, L.S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155(2), 307–330 (1999) Mei, R., Luo, L.S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155(2), 307–330 (1999)
25.
go back to reference Suzuki, K., Inamuro, T.: Effect of internal mass in the simulation of a moving body by the immersed boundary method. Comput. Fluids 49(1), 173–187 (2011)MathSciNetCrossRefMATH Suzuki, K., Inamuro, T.: Effect of internal mass in the simulation of a moving body by the immersed boundary method. Comput. Fluids 49(1), 173–187 (2011)MathSciNetCrossRefMATH
26.
go back to reference Niu, X.D., Shu, C., Chew, Y.T., Peng, Y.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys. Lett. A 354(3), 173–182 (2006)CrossRefMATH Niu, X.D., Shu, C., Chew, Y.T., Peng, Y.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys. Lett. A 354(3), 173–182 (2006)CrossRefMATH
Metadata
Title
A Comparison Between the Interpolated Bounce-Back Scheme and the Immersed Boundary Method to Treat Solid Boundary Conditions for Laminar Flows in the Lattice Boltzmann Framework
Authors
Alessandro De Rosis
Stefano Ubertini
Francesco Ubertini
Publication date
01-12-2014
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2014
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9834-0

Other articles of this Issue 3/2014

Journal of Scientific Computing 3/2014 Go to the issue

Premium Partner