Skip to main content
Top
Published in: Journal of Scientific Computing 1/2021

01-04-2021

A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation

Authors: Hong-Kui Pang, Hai-Wei Sun

Published in: Journal of Scientific Computing | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a fast algorithm for the variable-order (VO) space-fractional advection-diffusion equations with nonlinear source terms on a finite domain. Due to the impact of the space-dependent the VO, the resulting coefficient matrices arising from the finite difference discretization of the fractional advection-diffusion equation are dense without Toeplitz-like structure. By the properties of the elements of coefficient matrices, we show that the off-diagonal blocks can be approximated by low-rank matrices. Then we present a fast algorithm based on the polynomial interpolation to approximate the coefficient matrices. The approximation can be constructed in \({\mathcal {O}}(kN)\) operations and requires \({\mathcal {O}}(kN)\) storage with N and k being the number of unknowns and the approximants, respectively. Moreover, the matrix-vector multiplication can be implemented in \({\mathcal {O}} (kN\log N)\) complexity, which leads to a fast iterative solver for the resulting linear systems. The stability and convergence of the new scheme are also studied. Numerical tests are carried out to exemplify the accuracy and efficiency of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Mumer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Mumer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef
2.
go back to reference Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite difference approximation for the variable order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)MathSciNetMATH Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite difference approximation for the variable order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)MathSciNetMATH
3.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
4.
go back to reference Gomez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45, 219–226 (2008)CrossRef Gomez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45, 219–226 (2008)CrossRef
5.
go back to reference Rebenshtok, A., Denisov, S., Hänggi, P., Barkai, E.: Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett. 112, 110601 (2014)CrossRef Rebenshtok, A., Denisov, S., Hänggi, P., Barkai, E.: Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett. 112, 110601 (2014)CrossRef
6.
go back to reference Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)MathSciNet Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)MathSciNet
7.
go back to reference Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)MATH
8.
go back to reference Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with non-homogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8, 2487–2518 (2015)MathSciNetCrossRef Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with non-homogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8, 2487–2518 (2015)MathSciNetCrossRef
9.
go back to reference Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)MathSciNetCrossRef Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)MathSciNetCrossRef
10.
go back to reference Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetCrossRef Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetCrossRef
11.
go back to reference Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equation: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equation: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef
12.
go back to reference Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)CrossRef Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)CrossRef
13.
go back to reference Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef
14.
go back to reference Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)MathSciNetCrossRef Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)MathSciNetCrossRef
15.
go back to reference Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763–767 (2005)CrossRef Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763–767 (2005)CrossRef
16.
go back to reference Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef
17.
go back to reference Pedro, H., Kobayashi, M., Pereira, J., Coimbra, C.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)MathSciNetCrossRef Pedro, H., Kobayashi, M., Pereira, J., Coimbra, C.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)MathSciNetCrossRef
18.
go back to reference Kikuchi, K., Negoro, A.: On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)MathSciNetMATH Kikuchi, K., Negoro, A.: On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)MathSciNetMATH
19.
go back to reference Kobelev, Y., Kobelev, L., Klimontovich, Y.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48, 285–289 (2003)MathSciNetCrossRef Kobelev, Y., Kobelev, L., Klimontovich, Y.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48, 285–289 (2003)MathSciNetCrossRef
20.
go back to reference Diaz, G., Coimbra, C.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009)MathSciNetCrossRef Diaz, G., Coimbra, C.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009)MathSciNetCrossRef
21.
go back to reference Kumar, P., Chaudhary, S.: Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Technol. 9, 408–416 (2017) Kumar, P., Chaudhary, S.: Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Technol. 9, 408–416 (2017)
22.
go back to reference Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)CrossRef Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)CrossRef
23.
go back to reference Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)MathSciNetCrossRef Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)MathSciNetCrossRef
24.
go back to reference Zhao, X., Sun, Z., Karniadakis, G.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRef Zhao, X., Sun, Z., Karniadakis, G.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRef
25.
go back to reference Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 69, 119–133 (2019)MathSciNetCrossRef Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 69, 119–133 (2019)MathSciNetCrossRef
27.
go back to reference Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef
28.
go back to reference Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)MathSciNetCrossRef Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)MathSciNetCrossRef
29.
30.
go back to reference Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)MathSciNetCrossRef Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)MathSciNetCrossRef
31.
go back to reference Lei, S., Sun, H.: A Circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)MathSciNetCrossRef Lei, S., Sun, H.: A Circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)MathSciNetCrossRef
32.
go back to reference Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM Matrix Anal. Appl. 38, 1580–1614 (2017)MathSciNetCrossRef Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM Matrix Anal. Appl. 38, 1580–1614 (2017)MathSciNetCrossRef
33.
go back to reference Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef
34.
go back to reference Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MathSciNetCrossRef Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MathSciNetCrossRef
35.
go back to reference Pan, J., Ng, M., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)MathSciNetCrossRef Pan, J., Ng, M., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)MathSciNetCrossRef
36.
go back to reference Bai, Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25, e2157 (2018)MathSciNetCrossRef Bai, Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25, e2157 (2018)MathSciNetCrossRef
37.
go back to reference Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef
39.
go back to reference Chan, R., Lin, F., Ng, W.: Fast dense matrix method for the solution of integral equations of the second kind. Numer. Math. J. Chinese Univ. (English Ser.) 7, 105–120 (1998)MathSciNetMATH Chan, R., Lin, F., Ng, W.: Fast dense matrix method for the solution of integral equations of the second kind. Numer. Math. J. Chinese Univ. (English Ser.) 7, 105–120 (1998)MathSciNetMATH
40.
go back to reference Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing. SIAM, Philadelphia (2008)MATH Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing. SIAM, Philadelphia (2008)MATH
41.
go back to reference Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)MATH Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)MATH
42.
go back to reference Shen, J., Wang, Y., Xia, J.: Fast structured direct spectral method for differential equations with variable coefficients, I. The one-dimensional case. SIAM J. Sci. Comput. 38, A28–A54 (2016)MathSciNetCrossRef Shen, J., Wang, Y., Xia, J.: Fast structured direct spectral method for differential equations with variable coefficients, I. The one-dimensional case. SIAM J. Sci. Comput. 38, A28–A54 (2016)MathSciNetCrossRef
Metadata
Title
A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
Authors
Hong-Kui Pang
Hai-Wei Sun
Publication date
01-04-2021
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2021
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01427-w

Other articles of this Issue 1/2021

Journal of Scientific Computing 1/2021 Go to the issue

Premium Partner