Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.04.2021

A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation

verfasst von: Hong-Kui Pang, Hai-Wei Sun

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a fast algorithm for the variable-order (VO) space-fractional advection-diffusion equations with nonlinear source terms on a finite domain. Due to the impact of the space-dependent the VO, the resulting coefficient matrices arising from the finite difference discretization of the fractional advection-diffusion equation are dense without Toeplitz-like structure. By the properties of the elements of coefficient matrices, we show that the off-diagonal blocks can be approximated by low-rank matrices. Then we present a fast algorithm based on the polynomial interpolation to approximate the coefficient matrices. The approximation can be constructed in \({\mathcal {O}}(kN)\) operations and requires \({\mathcal {O}}(kN)\) storage with N and k being the number of unknowns and the approximants, respectively. Moreover, the matrix-vector multiplication can be implemented in \({\mathcal {O}} (kN\log N)\) complexity, which leads to a fast iterative solver for the resulting linear systems. The stability and convergence of the new scheme are also studied. Numerical tests are carried out to exemplify the accuracy and efficiency of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Mumer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Mumer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef
2.
Zurück zum Zitat Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite difference approximation for the variable order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)MathSciNetMATH Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite difference approximation for the variable order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)MathSciNetMATH
3.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
4.
Zurück zum Zitat Gomez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45, 219–226 (2008)CrossRef Gomez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45, 219–226 (2008)CrossRef
5.
Zurück zum Zitat Rebenshtok, A., Denisov, S., Hänggi, P., Barkai, E.: Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett. 112, 110601 (2014)CrossRef Rebenshtok, A., Denisov, S., Hänggi, P., Barkai, E.: Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem. Phys. Rev. Lett. 112, 110601 (2014)CrossRef
6.
Zurück zum Zitat Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)MathSciNet Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)MathSciNet
7.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)MATH
8.
Zurück zum Zitat Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with non-homogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8, 2487–2518 (2015)MathSciNetCrossRef Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with non-homogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8, 2487–2518 (2015)MathSciNetCrossRef
9.
Zurück zum Zitat Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)MathSciNetCrossRef Fang, Z., Sun, H., Wang, H.: A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)MathSciNetCrossRef
10.
Zurück zum Zitat Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetCrossRef Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetCrossRef
11.
Zurück zum Zitat Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equation: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equation: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)CrossRef Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)CrossRef
13.
Zurück zum Zitat Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef
14.
Zurück zum Zitat Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)MathSciNetCrossRef Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1, 277–300 (1993)MathSciNetCrossRef
15.
Zurück zum Zitat Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763–767 (2005)CrossRef Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763–767 (2005)CrossRef
16.
Zurück zum Zitat Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef
17.
Zurück zum Zitat Pedro, H., Kobayashi, M., Pereira, J., Coimbra, C.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)MathSciNetCrossRef Pedro, H., Kobayashi, M., Pereira, J., Coimbra, C.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)MathSciNetCrossRef
18.
Zurück zum Zitat Kikuchi, K., Negoro, A.: On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)MathSciNetMATH Kikuchi, K., Negoro, A.: On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)MathSciNetMATH
19.
Zurück zum Zitat Kobelev, Y., Kobelev, L., Klimontovich, Y.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48, 285–289 (2003)MathSciNetCrossRef Kobelev, Y., Kobelev, L., Klimontovich, Y.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48, 285–289 (2003)MathSciNetCrossRef
20.
Zurück zum Zitat Diaz, G., Coimbra, C.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009)MathSciNetCrossRef Diaz, G., Coimbra, C.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009)MathSciNetCrossRef
21.
Zurück zum Zitat Kumar, P., Chaudhary, S.: Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Technol. 9, 408–416 (2017) Kumar, P., Chaudhary, S.: Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Technol. 9, 408–416 (2017)
22.
Zurück zum Zitat Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)CrossRef Obembe, A., Hossain, M., Abu-Khamsin, S.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)CrossRef
23.
Zurück zum Zitat Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)MathSciNetCrossRef Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)MathSciNetCrossRef
24.
Zurück zum Zitat Zhao, X., Sun, Z., Karniadakis, G.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRef Zhao, X., Sun, Z., Karniadakis, G.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRef
25.
Zurück zum Zitat Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 69, 119–133 (2019)MathSciNetCrossRef Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 69, 119–133 (2019)MathSciNetCrossRef
27.
Zurück zum Zitat Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef
28.
Zurück zum Zitat Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)MathSciNetCrossRef Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)MathSciNetCrossRef
29.
Zurück zum Zitat Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)MathSciNetCrossRef Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)MathSciNetCrossRef
30.
Zurück zum Zitat Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)MathSciNetCrossRef Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Lei, S., Sun, H.: A Circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)MathSciNetCrossRef Lei, S., Sun, H.: A Circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)MathSciNetCrossRef
32.
Zurück zum Zitat Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM Matrix Anal. Appl. 38, 1580–1614 (2017)MathSciNetCrossRef Lin, X., Ng, M., Sun, H.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM Matrix Anal. Appl. 38, 1580–1614 (2017)MathSciNetCrossRef
33.
Zurück zum Zitat Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef
34.
Zurück zum Zitat Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MathSciNetCrossRef Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MathSciNetCrossRef
35.
Zurück zum Zitat Pan, J., Ng, M., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)MathSciNetCrossRef Pan, J., Ng, M., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)MathSciNetCrossRef
36.
Zurück zum Zitat Bai, Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25, e2157 (2018)MathSciNetCrossRef Bai, Z.: Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations. Numer. Linear Algebra Appl. 25, e2157 (2018)MathSciNetCrossRef
37.
Zurück zum Zitat Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef
39.
Zurück zum Zitat Chan, R., Lin, F., Ng, W.: Fast dense matrix method for the solution of integral equations of the second kind. Numer. Math. J. Chinese Univ. (English Ser.) 7, 105–120 (1998)MathSciNetMATH Chan, R., Lin, F., Ng, W.: Fast dense matrix method for the solution of integral equations of the second kind. Numer. Math. J. Chinese Univ. (English Ser.) 7, 105–120 (1998)MathSciNetMATH
40.
Zurück zum Zitat Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing. SIAM, Philadelphia (2008)MATH Dahlquist, G., Björck, Å.: Numerical Methods in Scientific Computing. SIAM, Philadelphia (2008)MATH
41.
Zurück zum Zitat Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)MATH Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)MATH
42.
Zurück zum Zitat Shen, J., Wang, Y., Xia, J.: Fast structured direct spectral method for differential equations with variable coefficients, I. The one-dimensional case. SIAM J. Sci. Comput. 38, A28–A54 (2016)MathSciNetCrossRef Shen, J., Wang, Y., Xia, J.: Fast structured direct spectral method for differential equations with variable coefficients, I. The one-dimensional case. SIAM J. Sci. Comput. 38, A28–A54 (2016)MathSciNetCrossRef
Metadaten
Titel
A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
verfasst von
Hong-Kui Pang
Hai-Wei Sun
Publikationsdatum
01.04.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01427-w

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe

Premium Partner