Skip to main content
Top
Published in: Journal of Computational Electronics 2/2020

06-03-2020

A physics-based model for LER-induced threshold voltage variations in double-gate MOSFET

Authors: S. R. Sriram, B. Bindu

Published in: Journal of Computational Electronics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The line-edge roughness (LER) has become one of the dominant sources of process variations in multi-gate transistors. The estimation of threshold voltage distribution due to LER through atomistic simulations is computationally intensive, even though these simulations provide accurate results. In this paper, a physics-based model for channel LER-induced threshold voltage fluctuations due to variations of the silicon-body thickness in a double-gate (DG) MOSFET is presented. The developed \(V_\mathrm{TH}\) model gives more insights into the dependence of device and LER parameters on the \(V_\mathrm{TH}\) variations with a reduced computational time. The computed \(V_\mathrm{TH}\) variations due to different LER patterns are validated with TCAD simulations. The threshold voltage standard deviation due to LER in 500 device samples for different device dimensions, doping concentration and biases is studied. The developed model can be easily integrated in any circuit simulator to predict the threshold voltage variations of the devices due to LER.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Collinge, J.P.: FinFETs and Other Multi-gate Transistors. Springer, Boston (2008)CrossRef Collinge, J.P.: FinFETs and Other Multi-gate Transistors. Springer, Boston (2008)CrossRef
2.
go back to reference Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 \(\mu m\) MOSFETs: A 3-D ’atomistic’ simulation study. IEEE Trans. Electron Devices 45(12), 2505–2513 (1998)CrossRef Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 \(\mu m\) MOSFETs: A 3-D ’atomistic’ simulation study. IEEE Trans. Electron Devices 45(12), 2505–2513 (1998)CrossRef
3.
go back to reference Bindu, B., Cheng, B., Roy, G., Wang, X., Roy, S., Asenov, A.: Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction. Solid-State Electron. 54(3), 307–315 (2010)CrossRef Bindu, B., Cheng, B., Roy, G., Wang, X., Roy, S., Asenov, A.: Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction. Solid-State Electron. 54(3), 307–315 (2010)CrossRef
5.
go back to reference Asenov, A., Kaya, S., Brown, A.R.: Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE Trans. Electron Devices 50(5), 1254–1260 (2003)CrossRef Asenov, A., Kaya, S., Brown, A.R.: Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE Trans. Electron Devices 50(5), 1254–1260 (2003)CrossRef
6.
go back to reference Patel, K., Liu, T.J.K., Spanos, C.J.: Gate line edge roughness model for estimation of FinFET performance variability. IEEE Trans. Electron Devices 56(12), 3055–3063 (2009)CrossRef Patel, K., Liu, T.J.K., Spanos, C.J.: Gate line edge roughness model for estimation of FinFET performance variability. IEEE Trans. Electron Devices 56(12), 3055–3063 (2009)CrossRef
7.
go back to reference Ye, Y., Gummalla, S., Wang, C.C., Chakrabarti, C., Cao, Y.: Random variability modeling and its impact on scaled CMOS circuits. J. Comput. Electron. 9(3–4), 108–113 (2010)CrossRef Ye, Y., Gummalla, S., Wang, C.C., Chakrabarti, C., Cao, Y.: Random variability modeling and its impact on scaled CMOS circuits. J. Comput. Electron. 9(3–4), 108–113 (2010)CrossRef
8.
go back to reference Brown, A.R., Roy, G., Asenov, A.: Poly-si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Trans. Electron Devices 54(11), 3056–3063 (2007)CrossRef Brown, A.R., Roy, G., Asenov, A.: Poly-si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Trans. Electron Devices 54(11), 3056–3063 (2007)CrossRef
9.
go back to reference Chiang, M.H., Lin, J.N., Kim, K., Chuang, C.T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)CrossRef Chiang, M.H., Lin, J.N., Kim, K., Chuang, C.T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)CrossRef
10.
go back to reference Shin, Y.H., Yun, I.: Analytical model for random dopant fluctuation in double-gate MOSFET in the subthreshold region using macroscopic modeling method. Solid-State Electron. 126, 136–142 (2016)CrossRef Shin, Y.H., Yun, I.: Analytical model for random dopant fluctuation in double-gate MOSFET in the subthreshold region using macroscopic modeling method. Solid-State Electron. 126, 136–142 (2016)CrossRef
11.
go back to reference Diaz, C.H., Tao, H.J., Ku, Y.C., Yen, A., Young, K.: An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling. IEEE Electron Device Lett. 22(6), 287–289 (2001)CrossRef Diaz, C.H., Tao, H.J., Ku, Y.C., Yen, A., Young, K.: An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling. IEEE Electron Device Lett. 22(6), 287–289 (2001)CrossRef
12.
go back to reference Wang, X., Cheng, B., Brown, A.R., Millar, C., Kuang, J.B., Nassif, S., Asenov, A.: Interplay between process-induced and statistical variability in 14-nm CMOS technology double-gate SOI FinFETs. IEEE Trans. Electron Devices 60(8), 2485–2492 (2013)CrossRef Wang, X., Cheng, B., Brown, A.R., Millar, C., Kuang, J.B., Nassif, S., Asenov, A.: Interplay between process-induced and statistical variability in 14-nm CMOS technology double-gate SOI FinFETs. IEEE Trans. Electron Devices 60(8), 2485–2492 (2013)CrossRef
13.
go back to reference Yang, Y., Yu, S., Zeng, L., Du, G., Kang, J., Zhao, Y., Han, R., Liu, X.: Variability induced by line edge roughness in double-gate dopant-segregated Schottky MOSFETs. IEEE Trans. Nanotechnol. 10(2), 244–249 (2011)CrossRef Yang, Y., Yu, S., Zeng, L., Du, G., Kang, J., Zhao, Y., Han, R., Liu, X.: Variability induced by line edge roughness in double-gate dopant-segregated Schottky MOSFETs. IEEE Trans. Nanotechnol. 10(2), 244–249 (2011)CrossRef
14.
go back to reference Yu, S., Zhao, Y., Zeng, L., Du, G., Kang, J., Han, R., Liu, X.: Impact of line-edge roughness on double-gate schottky-barrier field-effect transistors. IEEE Trans. Electron Devices 56(6), 1211–1219 (2009)CrossRef Yu, S., Zhao, Y., Zeng, L., Du, G., Kang, J., Han, R., Liu, X.: Impact of line-edge roughness on double-gate schottky-barrier field-effect transistors. IEEE Trans. Electron Devices 56(6), 1211–1219 (2009)CrossRef
15.
go back to reference Leung, G., Chui, C.O.: Stochastic variability in silicon double-gate lateral tunnel field-effect transistors. IEEE Trans. Electron Devices 60(1), 84–91 (2013)CrossRef Leung, G., Chui, C.O.: Stochastic variability in silicon double-gate lateral tunnel field-effect transistors. IEEE Trans. Electron Devices 60(1), 84–91 (2013)CrossRef
16.
go back to reference Arora, N.D.: MOSFET Models for VLSI Circuit Simulation: Theory and Practice. Springer, New York (2012) Arora, N.D.: MOSFET Models for VLSI Circuit Simulation: Theory and Practice. Springer, New York (2012)
17.
go back to reference Chinta, S.N., Mittal, S., Debashis, P., Ganguly, U.: A FinFET LER \(V_{T}\) variability estimation scheme with 300\(\times\) efficiency improvement. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 277–280. IEEE (2014) Chinta, S.N., Mittal, S., Debashis, P., Ganguly, U.: A FinFET LER \(V_{T}\) variability estimation scheme with 300\(\times\) efficiency improvement. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 277–280. IEEE (2014)
18.
go back to reference Jiang, X., Wang, X., Wang, R., Cheng, B., Asenov, A., Huang, R.: Predictive compact modeling of random variations in FinFET technology for 16/14nm node and beyond. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 28–3. IEEE (2015) Jiang, X., Wang, X., Wang, R., Cheng, B., Asenov, A., Huang, R.: Predictive compact modeling of random variations in FinFET technology for 16/14nm node and beyond. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 28–3. IEEE (2015)
19.
go back to reference Mittal, S., Shekhawat, A., Ganguly, U.: An analytical model to estimate FinFET’s \(V_{T}\) distribution due to fin-edge roughness. IEEE Trans. Electron Devices 63(3), 1352–1358 (2016)CrossRef Mittal, S., Shekhawat, A., Ganguly, U.: An analytical model to estimate FinFET’s \(V_{T}\) distribution due to fin-edge roughness. IEEE Trans. Electron Devices 63(3), 1352–1358 (2016)CrossRef
20.
go back to reference Mittal, S., Shekhawat, A., Ganguly, S., Ganguly, U., et al.: Analytical Model to estimate FinFET’s \(I_{ON}\), \(I_{OFF}\), \(SS\), and \(V_{T}\) distribution due to FER. IEEE Trans. Electron Devices 64(8), 3489–3493 (2017)CrossRef Mittal, S., Shekhawat, A., Ganguly, S., Ganguly, U., et al.: Analytical Model to estimate FinFET’s \(I_{ON}\), \(I_{OFF}\), \(SS\), and \(V_{T}\) distribution due to FER. IEEE Trans. Electron Devices 64(8), 3489–3493 (2017)CrossRef
21.
go back to reference Hanson, S., Seok, M., Sylvester, D., Blaauw, D.: Nanometer device scaling in subthreshold logic and SRAM. IEEE Trans. Electron Devices 55(1), 175–185 (2007)CrossRef Hanson, S., Seok, M., Sylvester, D., Blaauw, D.: Nanometer device scaling in subthreshold logic and SRAM. IEEE Trans. Electron Devices 55(1), 175–185 (2007)CrossRef
22.
go back to reference Baravelli, E., Jurczak, M., Speciale, N., De Meyer, K., Dixit, A.: Impact of LER and random dopant fluctuations on FinFET matching performance. IEEE Trans. Nanotechnol. 7(3), 291–298 (2008)CrossRef Baravelli, E., Jurczak, M., Speciale, N., De Meyer, K., Dixit, A.: Impact of LER and random dopant fluctuations on FinFET matching performance. IEEE Trans. Nanotechnol. 7(3), 291–298 (2008)CrossRef
23.
go back to reference Katti, G., DasGupta, N., DasGupta, A.: Threshold voltage model for mesa-isolated small geometry fully depleted SOI MOSFETs based on analytical solution of 3-D Poisson’s equation. IEEE Trans. Electron Devices 51(7), 1169–1177 (2004)CrossRef Katti, G., DasGupta, N., DasGupta, A.: Threshold voltage model for mesa-isolated small geometry fully depleted SOI MOSFETs based on analytical solution of 3-D Poisson’s equation. IEEE Trans. Electron Devices 51(7), 1169–1177 (2004)CrossRef
24.
go back to reference Chen, Q., Harrell, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)CrossRef Chen, Q., Harrell, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)CrossRef
25.
go back to reference Wu, Y.S., Su, P.: Sensitivity of multigate MOSFETs to process variations—an assessment based on analytical solutions of 3-D Poisson’s equation. IEEE Trans. Nanotechnol. 7(3), 299–304 (2008)CrossRef Wu, Y.S., Su, P.: Sensitivity of multigate MOSFETs to process variations—an assessment based on analytical solutions of 3-D Poisson’s equation. IEEE Trans. Nanotechnol. 7(3), 299–304 (2008)CrossRef
26.
go back to reference Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron Devices 55(9), 2512–2516 (2008)CrossRef Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron Devices 55(9), 2512–2516 (2008)CrossRef
27.
go back to reference Huang, X., Lee, W.C., Kuo, C., Hisamoto, D., Chang, L., Kedzierski, J., Anderson, E., Takeuchi, H., Choi, Y.K., Asano, K., et al.: Sub-50 nm P-channel FinFET. IEEE Trans. Electron Devices 48(5), 880–886 (2001)CrossRef Huang, X., Lee, W.C., Kuo, C., Hisamoto, D., Chang, L., Kedzierski, J., Anderson, E., Takeuchi, H., Choi, Y.K., Asano, K., et al.: Sub-50 nm P-channel FinFET. IEEE Trans. Electron Devices 48(5), 880–886 (2001)CrossRef
28.
go back to reference Doyle, B., Datta, S., Doczy, M., Hareland, S., Jin, B., Kavalieros, J., Linton, T., Murthy, A., Rios, R., Chau, R.: High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett. 24(4), 263–265 (2003)CrossRef Doyle, B., Datta, S., Doczy, M., Hareland, S., Jin, B., Kavalieros, J., Linton, T., Murthy, A., Rios, R., Chau, R.: High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett. 24(4), 263–265 (2003)CrossRef
29.
go back to reference Kranti, A., Armstrong, G.A.: Performance assessment of nanoscale double-and triple-gate FinFETs. Semicond. Sci. Technol. 21(4), 409 (2006)CrossRef Kranti, A., Armstrong, G.A.: Performance assessment of nanoscale double-and triple-gate FinFETs. Semicond. Sci. Technol. 21(4), 409 (2006)CrossRef
Metadata
Title
A physics-based model for LER-induced threshold voltage variations in double-gate MOSFET
Authors
S. R. Sriram
B. Bindu
Publication date
06-03-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01474-w

Other articles of this Issue 2/2020

Journal of Computational Electronics 2/2020 Go to the issue