Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2014

01-05-2014

A single nanobelt to achieve simultaneous photoluminescence–electricity–magnetism trifunction

Authors: Shujuan Sheng, Qianli Ma, Xiangting Dong, Nan Lv, Jinxian Wang, Wensheng Yu, Guixia Liu

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to develop new-typed multifunctional composite nanobelts, polymethyl methacrylate (PMMA) is used as the matrix to construct composite nanobelts containing different amounts of Eu(BA)3phen(BA = benzoic acid, phen = phenanthroline), polyaniline (PANI) and Fe3O4 nanoparticles (NPs), and Eu(BA)3phen/PANI/Fe3O4/PMMA trifunctional composite nanobelts with simultaneous photoluminescence, electricity and magnetism have been successfully fabricated via electrospinning technology. The morphology and properties of the obtained composite nanobelts were characterized by X-ray diffractometry, scanning electron microscopy, vibrating sample magnetometry, fluorescence spectroscopy and Hall effect measurement system. The results indicate that the trifunctional composite nanobelts simultaneously possess excellent photoluminescence, electrical conduction and magnetic properties. Fluorescence emission peaks of Eu3+ ions in the composite nanobelts are observed and assigned to the energy levels transitions of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (593 nm) and 5D0 → 7F2 (615 nm) of Eu3+ ions, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10−3 S/cm. Furthermore, the luminescent intensity, electrical conductivity and saturation magnetization of the composite nanobelts can be tunable by adjusting amounts of Eu(BA)3phen, PANI and Fe3O4 NPs. The formation mechanism of the composite nanobelts is also proposed. The obtained photoluminescence–electricity–magnetism trifunctional composite nanobelts have potential applications in many areas such as electromagnetic interference shielding, microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other trifunctional naonobelts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)CrossRef J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)CrossRef
3.
go back to reference S.A. Sell, P.S. Wolfe, J.J. Ericksen, D.G. Simpson, G.L. Bowlin, Tissue Eng. Part A 17, 2723–2737 (2011)CrossRef S.A. Sell, P.S. Wolfe, J.J. Ericksen, D.G. Simpson, G.L. Bowlin, Tissue Eng. Part A 17, 2723–2737 (2011)CrossRef
4.
go back to reference S.L. Chen, H.Q. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y.Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schröder, Energy Environ. Sci. 4, 1417–1421 (2011)CrossRef S.L. Chen, H.Q. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y.Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schröder, Energy Environ. Sci. 4, 1417–1421 (2011)CrossRef
5.
go back to reference M. Alvaro, V. Fornés, S. García, H. García, J.C. Scaiano, J. Phys. Chem. B 102, 8744–8750 (1998)CrossRef M. Alvaro, V. Fornés, S. García, H. García, J.C. Scaiano, J. Phys. Chem. B 102, 8744–8750 (1998)CrossRef
7.
go back to reference H. Li, S. Inoue, K. Machida, G. Adachi, Chem. Mater. 11, 3171–3176 (1999)CrossRef H. Li, S. Inoue, K. Machida, G. Adachi, Chem. Mater. 11, 3171–3176 (1999)CrossRef
8.
go back to reference H.Y. Feng, S.H. Jian, Y.P. Wang, Z.Q. Lei, R.M. Wang, J. Appl. Polym. Sci. 68, 1605–1611 (1998)CrossRef H.Y. Feng, S.H. Jian, Y.P. Wang, Z.Q. Lei, R.M. Wang, J. Appl. Polym. Sci. 68, 1605–1611 (1998)CrossRef
9.
go back to reference Q. Ling, M. Yang, Z. Wu, X. Zhang, L. Wang, W. Zhang, Polymer 42, 4605–4610 (2001)CrossRef Q. Ling, M. Yang, Z. Wu, X. Zhang, L. Wang, W. Zhang, Polymer 42, 4605–4610 (2001)CrossRef
11.
12.
go back to reference Q.H. Zhang, H.F. Jin, X.H. Wang, X.B. Jing, Synth. Met. 123, 481–485 (2001)CrossRef Q.H. Zhang, H.F. Jin, X.H. Wang, X.B. Jing, Synth. Met. 123, 481–485 (2001)CrossRef
13.
go back to reference J. Huang, S. Virji, B.H. Weiller, R.K. Prof, Chem. Eur. J. 10, 1314–1319 (2004)CrossRef J. Huang, S. Virji, B.H. Weiller, R.K. Prof, Chem. Eur. J. 10, 1314–1319 (2004)CrossRef
14.
go back to reference Q.Z. Yu, M.M. Shi, M. Deng, M. Wang, H.Z. Chen, Mater. Sci. Eng., B 150, 70–76 (2008)CrossRef Q.Z. Yu, M.M. Shi, M. Deng, M. Wang, H.Z. Chen, Mater. Sci. Eng., B 150, 70–76 (2008)CrossRef
15.
go back to reference F. Chabert, D.E. Dunstan, G.V. Franks, J. Am. Ceram. Soc. 91, 3138–3146 (2008)CrossRef F. Chabert, D.E. Dunstan, G.V. Franks, J. Am. Ceram. Soc. 91, 3138–3146 (2008)CrossRef
16.
go back to reference J.B. Ballengee, P.N. Pintauro, J. Electrochem. Soc. 158, B568–B572 (2011)CrossRef J.B. Ballengee, P.N. Pintauro, J. Electrochem. Soc. 158, B568–B572 (2011)CrossRef
17.
go back to reference D.S. Tang, S.S. Xie, Z.W. Pan, L.F. Sun, Z.Q. Liu, X.P. Zou, Y.B. Li, L.J. Ci, W. Liu, B.S. Zou, W.Y. Zhou, Chem. Phys. Lett. 356, 563–566 (2002)CrossRef D.S. Tang, S.S. Xie, Z.W. Pan, L.F. Sun, Z.Q. Liu, X.P. Zou, Y.B. Li, L.J. Ci, W. Liu, B.S. Zou, W.Y. Zhou, Chem. Phys. Lett. 356, 563–566 (2002)CrossRef
18.
go back to reference M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Science 291, 849–851 (2001)CrossRef M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Science 291, 849–851 (2001)CrossRef
19.
20.
go back to reference S. Bucak, D.A. Jones, P.E. Laibinis, Biotechnol. Progr. 19, 477–484 (2003)CrossRef S. Bucak, D.A. Jones, P.E. Laibinis, Biotechnol. Progr. 19, 477–484 (2003)CrossRef
21.
go back to reference S.V. Kolotilov, O. Cador, F. Pointillart, S. Golhen, Y.L. Gai, K.S. Gavrilenko, L. Ouahab, J. Mater. Chem. 20, 9505–9514 (2010)CrossRef S.V. Kolotilov, O. Cador, F. Pointillart, S. Golhen, Y.L. Gai, K.S. Gavrilenko, L. Ouahab, J. Mater. Chem. 20, 9505–9514 (2010)CrossRef
22.
go back to reference B.K. Balan, V.S. Kale, P.P. Aher, M.V. Shelke, V.K. Pillai, S. Kurunqut, Chem. Commun. 46, 5590–5592 (2010)CrossRef B.K. Balan, V.S. Kale, P.P. Aher, M.V. Shelke, V.K. Pillai, S. Kurunqut, Chem. Commun. 46, 5590–5592 (2010)CrossRef
23.
go back to reference P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, J.Z. Ni, Talanta 82, 450–457 (2010)CrossRef P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, J.Z. Ni, Talanta 82, 450–457 (2010)CrossRef
24.
go back to reference H. Peng, G. Liu, X. Dong, J. Wang, W. Yu, J. Alloys Compd. 509, 6930–6934 (2011)CrossRef H. Peng, G. Liu, X. Dong, J. Wang, W. Yu, J. Alloys Compd. 509, 6930–6934 (2011)CrossRef
26.
go back to reference Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1–7 (2012) Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1–7 (2012)
27.
go back to reference Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)CrossRef Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)CrossRef
28.
go back to reference Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. J. Chin. U 8, 1657–1662 (2012) Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. J. Chin. U 8, 1657–1662 (2012)
29.
go back to reference R. Katal, S. Pourkarimi, E. Bahmani, H.A. Dehkordi, M.A. Ghayyem, H. Esfandian, J. Vin, Addit. Technol. 19, 147–156 (2013)CrossRef R. Katal, S. Pourkarimi, E. Bahmani, H.A. Dehkordi, M.A. Ghayyem, H. Esfandian, J. Vin, Addit. Technol. 19, 147–156 (2013)CrossRef
31.
go back to reference Y.F. Zhu, W.R. Zhao, H.R. Chen, J.L. Shi, J. Phys. Chem. C 111, 5281–5285 (2007)CrossRef Y.F. Zhu, W.R. Zhao, H.R. Chen, J.L. Shi, J. Phys. Chem. C 111, 5281–5285 (2007)CrossRef
32.
go back to reference Q. Gao, F.H. Chen, J.L. Zhang, G.Y. Hong, J.Z. Ni, X. Wei, D.J. Wang, J. Magn. Magn. Mater. 321, 1052–1057 (2009)CrossRef Q. Gao, F.H. Chen, J.L. Zhang, G.Y. Hong, J.Z. Ni, X. Wei, D.J. Wang, J. Magn. Magn. Mater. 321, 1052–1057 (2009)CrossRef
33.
go back to reference S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, J. Magn. Magn. Mater. 308, 210–213 (2007)CrossRef S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, J. Magn. Magn. Mater. 308, 210–213 (2007)CrossRef
Metadata
Title
A single nanobelt to achieve simultaneous photoluminescence–electricity–magnetism trifunction
Authors
Shujuan Sheng
Qianli Ma
Xiangting Dong
Nan Lv
Jinxian Wang
Wensheng Yu
Guixia Liu
Publication date
01-05-2014
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2014
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-1872-8

Other articles of this Issue 5/2014

Journal of Materials Science: Materials in Electronics 5/2014 Go to the issue