Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

26-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

An evolutionary multi-hidden Markov model for intelligent threat sensing in industrial internet of things

Journal:
The Journal of Supercomputing > Issue 6/2021
Authors:
Mohammad Ayoub Khan, Khaled Ali Abuhasel
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Threat problem has become more complex in the industrial environment due to the need to secure a large number of devices from attack while maintaining system reliability and real-time response to threats. In such scenario detection of threat in Industrial Internet of things (IIoT) devices becomes an important factor to avoid injection by malicious IIoT devices. The techniques based on the Hidden Markov Models (HMM) are probably the most popular in detecting threat of detection. However, HMM requires extensive training of the models and computational resources. Also, HMM has the drawback of convergence to a local optimum while using Baum–Welch algorithm for parameter estimation. In order to optimize the HMM parameters, global search techniques can be used. This work proposes Genetic algorithms (GA) for optimizing HMM parameters. The other difficulty in threat detection is the dynamic nature of the attack. Several new threats are emerging with many variants which are created from existing attacks, making threat modeling an arduous task. As a result, good features are critical to model traffic and provide an efficient way to detect known and possibly unknown attacks to detect. To achieve a better feature extraction from the network traffic, we propose a dynamic sliding window \(W\) which has a width of \(w\). The proposed multiple-HMM performs well to detect threats. The simulation results are compared to the results obtained by the Baum–Welch algorithm based approach showing higher accuracy and convergences.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits