Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-2/2022

03-02-2022 | ORIGINAL ARTICLE

An improved cutting force model in micro-milling considering the comprehensive effect of tool runout, size effect, and tool wear

Authors: Tongshun Liu, Yayun Liu, Kedong Zhang

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tool runout, cutting edge radius-size effect, and tool wear have significant impacts on the cutting force of micro-milling. In order to predict the micro-milling force and the related cutting performance, it is necessary to establish a cutting force model including tool runout, cutting edge radius, and tool wear. In this study, an instantaneous uncut chip thickness (IUCT) model considering tool runout, a nonlinear shear/ploughing coefficient model including cutting-edge radius, and a friction force coefficient model embedded with flank wear width are respectively constructed. By integrating the IUCT, the nonlinear shear/ploughing coefficient and the friction force coefficient, a comprehensive micro-milling force model including tool runout, cutting edge radius, and tool wear is derived. Experiment results show that the proposed comprehensive model is efficient to predict the nonlinear cutting force of micro-milling with variable tool runout, cutting edge radius, and tool wear.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mian AJ, Driver N, Mativenga PT (2009) Micromachining of coarse-grained multi-phase material. Pi Mech Eng Bj Eng 223(4):377–385 Mian AJ, Driver N, Mativenga PT (2009) Micromachining of coarse-grained multi-phase material. Pi Mech Eng Bj Eng 223(4):377–385
2.
go back to reference Chen N, Li HN, Wu J, Li Z, Li L, Liu G, He N (2020) Advances in micro milling: from tool fabrication to process outcomes. Int J Mach Tools Manuf 103670 Chen N, Li HN, Wu J, Li Z, Li L, Liu G, He N (2020) Advances in micro milling: from tool fabrication to process outcomes. Int J Mach Tools Manuf 103670
3.
go back to reference Mustapha KB, Zhong ZW (2013) A hybrid analytical model for the transverse vibration response of a micro-end mill. Mech Syst Signal Process 34(1–2):321–339CrossRef Mustapha KB, Zhong ZW (2013) A hybrid analytical model for the transverse vibration response of a micro-end mill. Mech Syst Signal Process 34(1–2):321–339CrossRef
4.
go back to reference Jia Z, Lu X, Gu H, Ruan F, Liang SY (2021) Deflection prediction of micro-milling Inconel 718 thin-walled parts. J Mater Process Tech 291:117003 Jia Z, Lu X, Gu H, Ruan F, Liang SY (2021) Deflection prediction of micro-milling Inconel 718 thin-walled parts. J Mater Process Tech 291:117003
5.
go back to reference Singh KK, Kartik V, Singh R (2018) Stability modeling with dynamic run-out in high speed micromilling ofTi6Al4V. Int J Mech Sci 150:677–690CrossRef Singh KK, Kartik V, Singh R (2018) Stability modeling with dynamic run-out in high speed micromilling ofTi6Al4V. Int J Mech Sci 150:677–690CrossRef
6.
go back to reference Zhang X, Yu T, Dai Y, Qu S, Zhao J (2020) Energy consumption considering tool wear and optimization of cutting parameters in micro milling process. Int J Mech Sci 178:105628 Zhang X, Yu T, Dai Y, Qu S, Zhao J (2020) Energy consumption considering tool wear and optimization of cutting parameters in micro milling process. Int J Mech Sci 178:105628
7.
go back to reference Ray D, Puri AB, Naga H, Saurav H (2020) Analysis on specific cutting energy in micro milling of bulk metallic glass. Int J Adv Manuf 108(1–2):245–261CrossRef Ray D, Puri AB, Naga H, Saurav H (2020) Analysis on specific cutting energy in micro milling of bulk metallic glass. Int J Adv Manuf 108(1–2):245–261CrossRef
8.
go back to reference Bao WY, Tansel IN (2000) Modeling micro-end-milling operations, Part II: tool run-out. Int J Mach Tools Manuf 40(15):2175–2192CrossRef Bao WY, Tansel IN (2000) Modeling micro-end-milling operations, Part II: tool run-out. Int J Mach Tools Manuf 40(15):2175–2192CrossRef
9.
go back to reference Jing X, Lv R, Chen Y, Tian Y, Li H (2020) Modelling and experimental analysis of the effects of run out, minimum chip thickness and elastic recovery on the cutting force in micro-end-milling. Int J Mech Sci 176:105540 Jing X, Lv R, Chen Y, Tian Y, Li H (2020) Modelling and experimental analysis of the effects of run out, minimum chip thickness and elastic recovery on the cutting force in micro-end-milling. Int J Mech Sci 176:105540
10.
go back to reference Lu XH, Wang FR, Jia ZY, Si LK, Zhang C, Liang SY (2017) A modified analytical cutting force prediction model under the tool flank wear effect in micro-milling nickel-based superalloy. Int J Adv Manuf 91:3709–3716CrossRef Lu XH, Wang FR, Jia ZY, Si LK, Zhang C, Liang SY (2017) A modified analytical cutting force prediction model under the tool flank wear effect in micro-milling nickel-based superalloy. Int J Adv Manuf 91:3709–3716CrossRef
11.
go back to reference Wan M, Wen DY, Ma YC, Zhang WH (2019) On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone. Int J Mach Tools Manuf 146:103452 Wan M, Wen DY, Ma YC, Zhang WH (2019) On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone. Int J Mach Tools Manuf 146:103452
12.
go back to reference Lai XM, Li HT, Li CF, Lin ZQ, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14CrossRef Lai XM, Li HT, Li CF, Lin ZQ, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14CrossRef
13.
go back to reference Wojciechowski S, Matuszak M, Powałka B, Madajewski M, Maruda RW, Krolczyk GM (2019) Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int J Mach Tools Manuf 147:103466 Wojciechowski S, Matuszak M, Powałka B, Madajewski M, Maruda RW, Krolczyk GM (2019) Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int J Mach Tools Manuf 147:103466
14.
go back to reference Li K, Zhu K, Mei T (2016) A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling. Int J Mach Tool Manu 105:23–31CrossRef Li K, Zhu K, Mei T (2016) A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling. Int J Mach Tool Manu 105:23–31CrossRef
15.
go back to reference Zhu KP, Zhang Y (2017) Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int J Mach Tools Manuf 118:37–48CrossRef Zhu KP, Zhang Y (2017) Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int J Mach Tools Manuf 118:37–48CrossRef
16.
go back to reference Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann-Manuf Technol 57(1):113–116CrossRef Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann-Manuf Technol 57(1):113–116CrossRef
17.
go back to reference Liu Z, Shi Z, Wan Y (2013) Definition and determination of the minimum uncut chip thickness of microcutting. Int J Adv Manuf 69(5):1219–1232 Liu Z, Shi Z, Wan Y (2013) Definition and determination of the minimum uncut chip thickness of microcutting. Int J Adv Manuf 69(5):1219–1232
18.
go back to reference Chen N, Li L, Wu J, Qian J, He N, Reynaerts D (2019) Research on the ploughing force in micro milling of soft-brittle crystals. Int J Mech Sci 155:315–322CrossRef Chen N, Li L, Wu J, Qian J, He N, Reynaerts D (2019) Research on the ploughing force in micro milling of soft-brittle crystals. Int J Mech Sci 155:315–322CrossRef
19.
go back to reference Liu X, DeVor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Et Asme 128(2):474–481CrossRef Liu X, DeVor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Et Asme 128(2):474–481CrossRef
20.
go back to reference Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45(4–5):529–535CrossRef Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45(4–5):529–535CrossRef
21.
go back to reference Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool variations, and cnc design, 2nd edn. Cambridge University Press, New York, USA Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool variations, and cnc design, 2nd edn. Cambridge University Press, New York, USA
22.
go back to reference Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Tech 212(3):553–559CrossRef Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Tech 212(3):553–559CrossRef
23.
go back to reference Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part III: influence of tool wear. Int J Mach Tools Manuf 40:2193–2211CrossRef Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part III: influence of tool wear. Int J Mach Tools Manuf 40:2193–2211CrossRef
24.
go back to reference Hou YF, Zhang DH, Wu BH, Luo M (2015) Milling force modeling of worn tool and tool flank wear recognition in end milling. IEEE/ASME Trans Mechatron 20(3):1024–1035CrossRef Hou YF, Zhang DH, Wu BH, Luo M (2015) Milling force modeling of worn tool and tool flank wear recognition in end milling. IEEE/ASME Trans Mechatron 20(3):1024–1035CrossRef
25.
go back to reference Zhou L, Deng B, Peng F, Yang M, Yan R (2020) Semi-analytic modelling of cutting forces in micro ball-end milling of NAK80 steel with wear-varying cutting edge and associated nonlinear process characteristics. Int J Mech Sci 169:105343 Zhou L, Deng B, Peng F, Yang M, Yan R (2020) Semi-analytic modelling of cutting forces in micro ball-end milling of NAK80 steel with wear-varying cutting edge and associated nonlinear process characteristics. Int J Mech Sci 169:105343
26.
go back to reference Li GC, Li S, Zhu KP (2020) Micro-milling force modeling with tool wear and runout effect by spatial analytic geometry. Int J Adv Manuf 107(1):631–643CrossRef Li GC, Li S, Zhu KP (2020) Micro-milling force modeling with tool wear and runout effect by spatial analytic geometry. Int J Adv Manuf 107(1):631–643CrossRef
27.
go back to reference Liu TS, Zhu KP, Wang G (2020) Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method. Int J Adv Manuf Technol 111:3175–3188CrossRef Liu TS, Zhu KP, Wang G (2020) Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method. Int J Adv Manuf Technol 111:3175–3188CrossRef
28.
go back to reference Oliveira FB, Rodrigues AR, Coelho RT, Souza AF (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54CrossRef Oliveira FB, Rodrigues AR, Coelho RT, Souza AF (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54CrossRef
29.
go back to reference Kang IS, Kim JS, Seo YW (2011) Investigation of cutting force behaviour considering the effect of cutting edge radius in the micro-scale milling of AISI 1045 steel. Proceedings of the institution of mechanical engineers, Part B: J Eng Manuf 225(2):163–171CrossRef Kang IS, Kim JS, Seo YW (2011) Investigation of cutting force behaviour considering the effect of cutting edge radius in the micro-scale milling of AISI 1045 steel. Proceedings of the institution of mechanical engineers, Part B: J Eng Manuf 225(2):163–171CrossRef
30.
go back to reference Zong WJ, Huang YH, Zhang YL, Sun T (2014) Conservation law of surface roughness in single point diamond turning. Int J Mach Tools Manuf 84:58–63CrossRef Zong WJ, Huang YH, Zhang YL, Sun T (2014) Conservation law of surface roughness in single point diamond turning. Int J Mach Tools Manuf 84:58–63CrossRef
Metadata
Title
An improved cutting force model in micro-milling considering the comprehensive effect of tool runout, size effect, and tool wear
Authors
Tongshun Liu
Yayun Liu
Kedong Zhang
Publication date
03-02-2022
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-2/2022
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-08777-1

Other articles of this Issue 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Go to the issue

Premium Partners