Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

07-04-2021

Annealing temperature-driven near-surface crystallization with improved luminescence in self‐patterned alumina films

Authors: S. Pal, S. Bhowmick, S. A. Khan, A. Claverie, D. Kanjilal, A. K. Bakshi, A. Kanjilal

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The impact of annealing on luminescence properties of radio-frequency magnetron sputtering grown alumina films and their possible application in radiation measurement are presented. Here, grazing incidence X-ray diffraction study reveals the growth of amorphous alumina films, while the annealing treatment results in the gradual formation of nanocrystallites. They are found to be embedded in the amorphous matrix by cross-sectional Transmission Electron Microscopy for 1200 °C annealed thin film. The evolution of self-patterned wrinkles has also been observed at the surface by Scanning Electron Microscopy. A comprehensive analysis of optically active defect centers is carried out by room temperature photoluminescence (PL) measurement. This indicates a monotonic increase of oxygen vacancies (F centers) with increasing annealing temperature up to 1200 °C, though they are not directly correlated with the thermoluminescence (TL) results after exposing them to gamma radiation from a 60Co source. Based on PL analysis, the TL glow curves with increasing annealing temperature are elucidated in the light of the involvement of both trap centers and F-type recombination centers residing at grain boundaries. In terms of TL results, 1200 °C annealed alumina film is found to be superior to both the as-grown film, and the one annealed at 1100 °C. Finally, the linear TL response curves in the 1200 °C annealed film after exposing to both gamma radiation (up to 5 kGy) and energetic charged particles (80 MeV carbon ions) are demonstrated up to 130 kGy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22, 3326 (2012)CrossRef R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22, 3326 (2012)CrossRef
2.
3.
go back to reference D. Sharma, S. Bhowmick, A. Das, A. Kanjilal, C.P. Saini, Mater. Res. Exp. 6, 095047 (2019)CrossRef D. Sharma, S. Bhowmick, A. Das, A. Kanjilal, C.P. Saini, Mater. Res. Exp. 6, 095047 (2019)CrossRef
4.
go back to reference S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186 (2020)CrossRef S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186 (2020)CrossRef
5.
go back to reference S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Ultrason. Sonochem. 72, 105420 (2020)CrossRef S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Ultrason. Sonochem. 72, 105420 (2020)CrossRef
6.
go back to reference J. Lee, M.C. Orilall, S.C. Warren, M. Kamperman, F.J. DiSalvo, U Wiesner, Nat. Mater. 7, 222 (2008)CrossRef J. Lee, M.C. Orilall, S.C. Warren, M. Kamperman, F.J. DiSalvo, U Wiesner, Nat. Mater. 7, 222 (2008)CrossRef
7.
8.
9.
go back to reference A. Emeline, G. Kataeva, A. Panasuk, V. Ryabchuk, N. Sheremetyeva, N. Serpone, J. Phys. Chem. B 109, 5175 (2005)CrossRef A. Emeline, G. Kataeva, A. Panasuk, V. Ryabchuk, N. Sheremetyeva, N. Serpone, J. Phys. Chem. B 109, 5175 (2005)CrossRef
10.
go back to reference M. Gutowski, J.E. Jaffe, C.-L. Liu et al., Appl. Phys. Lett. 80, 1897 (2002)CrossRef M. Gutowski, J.E. Jaffe, C.-L. Liu et al., Appl. Phys. Lett. 80, 1897 (2002)CrossRef
11.
go back to reference V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov, Nano Lett. 6, 1584 (2006)CrossRef V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov, Nano Lett. 6, 1584 (2006)CrossRef
12.
13.
go back to reference Y. Yang, J. Qi, Y. Gu, W. Guo, Y. Zhang, Appl. Phys. Lett. 96, 123103 (2010)CrossRef Y. Yang, J. Qi, Y. Gu, W. Guo, Y. Zhang, Appl. Phys. Lett. 96, 123103 (2010)CrossRef
14.
15.
go back to reference A. Dev, J. Richters, J. Sartor, H. Kalt, J. Gutowski, T. Voss, Appl. Phys. Lett. 98, 131111 (2011)CrossRef A. Dev, J. Richters, J. Sartor, H. Kalt, J. Gutowski, T. Voss, Appl. Phys. Lett. 98, 131111 (2011)CrossRef
16.
18.
go back to reference K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Nature 422, 53 (2003)CrossRef K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Nature 422, 53 (2003)CrossRef
19.
20.
go back to reference S.A. Heidari-Asil, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, Int. J. Hydrogen Energy 45, 22761 (2020)CrossRef S.A. Heidari-Asil, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, Int. J. Hydrogen Energy 45, 22761 (2020)CrossRef
21.
go back to reference S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasari, Sep. and Purific. Technol. 248, 117062 (2020)CrossRef S. Zinatloo-Ajabshir, M. Baladi, O. Amiri, M. Salavati-Niasari, Sep. and Purific. Technol. 248, 117062 (2020)CrossRef
22.
go back to reference M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Adv. Powder Technol. 28, 697 (2017)CrossRef M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Adv. Powder Technol. 28, 697 (2017)CrossRef
23.
24.
go back to reference T. Kamiya, H. Hiramatsu, K. Nomura, H. Hosono, J. Electrocer. 17, 267 (2006)CrossRef T. Kamiya, H. Hiramatsu, K. Nomura, H. Hosono, J. Electrocer. 17, 267 (2006)CrossRef
25.
26.
go back to reference A. Barman, C. Saini, P. Sarkar et al., Appl. Phys. Lett. 108, 244104 (2016)CrossRef A. Barman, C. Saini, P. Sarkar et al., Appl. Phys. Lett. 108, 244104 (2016)CrossRef
27.
go back to reference A.A. Odeh, Y. Al-Douri, Metal Oxide Powder Technologies (Elsevier, New York, 2020). A.A. Odeh, Y. Al-Douri, Metal Oxide Powder Technologies (Elsevier, New York, 2020).
28.
go back to reference HA Gatea, J. Mater. Sci.: Mater. Electron: 31, 22119–22130 (2020) HA Gatea, J. Mater. Sci.: Mater. Electron: 31, 22119–22130 (2020)
29.
go back to reference N Akçay, J. Mater. Sci.: Mater. Electron: 31, 22467–22477 (2020) N Akçay, J. Mater. Sci.: Mater. Electron: 31, 22467–22477 (2020)
30.
go back to reference M. Zubkins, J. Gabrusenoks, G. Chikvaidze et al., J. Appl. Phys. 128, 215303 (2020)CrossRef M. Zubkins, J. Gabrusenoks, G. Chikvaidze et al., J. Appl. Phys. 128, 215303 (2020)CrossRef
31.
go back to reference L. Zhang, H. Jiang, C. Liu, J. Dong, P. Chow, J. Phys. D: Appl. Phys. 40, 3707 (2007)CrossRef L. Zhang, H. Jiang, C. Liu, J. Dong, P. Chow, J. Phys. D: Appl. Phys. 40, 3707 (2007)CrossRef
32.
go back to reference Z. Heiba, M.B. Mohamed, AM Wahba, J. Mater. Sci.: Mater. Electron. 31, 14645 (2020) Z. Heiba, M.B. Mohamed, AM Wahba, J. Mater. Sci.: Mater. Electron. 31, 14645 (2020)
33.
go back to reference K. Kandpal, J. Singh, N. Gupta, C Shekhar, J. Mater. Sci.: Mater. Electron. 29, 14501 (2018) K. Kandpal, J. Singh, N. Gupta, C Shekhar, J. Mater. Sci.: Mater. Electron. 29, 14501 (2018)
34.
go back to reference J. Cardoletti, P. Komissinskiy, E. Bruder, C. Morandi, L. Alff, J. Appl. Phys. 128, 104103 (2020)CrossRef J. Cardoletti, P. Komissinskiy, E. Bruder, C. Morandi, L. Alff, J. Appl. Phys. 128, 104103 (2020)CrossRef
35.
go back to reference Y. Wu, F. Cao, X. Ji, J. Mater. Sci.: Mater. Electron.: 31:, 17365–17374 (2020) Y. Wu, F. Cao, X. Ji, J. Mater. Sci.: Mater. Electron.: 31:, 17365–17374 (2020)
36.
37.
go back to reference W. Gulbiński, Chemical Physics of Thin Film Deposition Processes for Micro-and Nano-Technologies (Springer, New York, 2002). W. Gulbiński, Chemical Physics of Thin Film Deposition Processes for Micro-and Nano-Technologies (Springer, New York, 2002).
38.
39.
go back to reference Y. Ando, K. Nagamatsu, M. Deki et al., Appl. Phys. Lett. 117, 242104 (2020)CrossRef Y. Ando, K. Nagamatsu, M. Deki et al., Appl. Phys. Lett. 117, 242104 (2020)CrossRef
40.
go back to reference V. Kortov, A. Kiryakov, D. Ananchenko, S. Zvonarev. J. Phys.: Conf. Series Institute of Physics Publishing (2015) V. Kortov, A. Kiryakov, D. Ananchenko, S. Zvonarev. J. Phys.: Conf. Series Institute of Physics Publishing (2015)
41.
go back to reference S. Fujihara, Chemical Solution Deposition of Functional Oxide Thin Films (Springer, New York, 2013). S. Fujihara, Chemical Solution Deposition of Functional Oxide Thin Films (Springer, New York, 2013).
42.
go back to reference M. Sainz, A. Mazzoni, E. Aglietti, A. Caballero, Mater. Chem. Phys. 86, 399 (2004)CrossRef M. Sainz, A. Mazzoni, E. Aglietti, A. Caballero, Mater. Chem. Phys. 86, 399 (2004)CrossRef
43.
go back to reference M. Rahaman, B. Sonnybal, Biomaterials for Artificial Organs (Elsevier, New York, 2011). M. Rahaman, B. Sonnybal, Biomaterials for Artificial Organs (Elsevier, New York, 2011).
44.
45.
go back to reference M. Nofz, Alumina Thin Films in Handbook of Sol-Gel Science and Technology (Springer, New York, 2016), pp. 765–808 M. Nofz, Alumina Thin Films in Handbook of Sol-Gel Science and Technology (Springer, New York, 2016), pp. 765–808
46.
go back to reference S. Tajima, N. Baba, K. Shimizu, I Mizuki, Electrocomp. Sci. Technol. 3 (1976) S. Tajima, N. Baba, K. Shimizu, I Mizuki, Electrocomp. Sci. Technol. 3 (1976)
47.
go back to reference D. Ilin, A. Vokhmintsev, I. Weinstein AIP Conf. Proc. AIP Publishing LLC (2016) D. Ilin, A. Vokhmintsev, I. Weinstein AIP Conf. Proc. AIP Publishing LLC (2016)
48.
go back to reference S.Y. Sokovnin, V. Il’ves, A. Surdo, I. Mil’man, M. Vlasov, Nanotechnol. Russia 8, 466 (2013)CrossRef S.Y. Sokovnin, V. Il’ves, A. Surdo, I. Mil’man, M. Vlasov, Nanotechnol. Russia 8, 466 (2013)CrossRef
49.
go back to reference J.F. Ziegler, M.D. Ziegler, JP Biersack, Nucl. Instrum. Meth. Phys B 268, 1818 (2010)CrossRef J.F. Ziegler, M.D. Ziegler, JP Biersack, Nucl. Instrum. Meth. Phys B 268, 1818 (2010)CrossRef
50.
go back to reference M. Ohring, Material Science&Nbsp;Thin Films (Elsevier, New York, 2001). M. Ohring, Material Science&Nbsp;Thin Films (Elsevier, New York, 2001).
51.
go back to reference J. Musil, J. Blažek, P. Zeman, Š Prokšová, M. Šašek, R Čerstvý, Appl. Surf. Sci. 257, 1058 (2010)CrossRef J. Musil, J. Blažek, P. Zeman, Š Prokšová, M. Šašek, R Čerstvý, Appl. Surf. Sci. 257, 1058 (2010)CrossRef
52.
go back to reference V. Barros, W. De Azevedo, H. Khoury, M. Andrade, P Linhares Filho (2010) Rad. Meas. 45: 435CrossRef V. Barros, W. De Azevedo, H. Khoury, M. Andrade, P Linhares Filho (2010) Rad. Meas. 45: 435CrossRef
54.
go back to reference V. Kortov, S. Zvonarev, A. Kiryakov, D. Ananchenko, Rad. Meas. 90, 196 (2016)CrossRef V. Kortov, S. Zvonarev, A. Kiryakov, D. Ananchenko, Rad. Meas. 90, 196 (2016)CrossRef
56.
go back to reference T. Perevalov, O. Tereshenko, V. Gritsenko et al., J. Appl. Phys. 108, 013501 (2010)CrossRef T. Perevalov, O. Tereshenko, V. Gritsenko et al., J. Appl. Phys. 108, 013501 (2010)CrossRef
57.
go back to reference S. Nikiforov, V. Kortov, A. Nosal, E. Moiseikin, Phys. Sol. Stat. 53, 2141 (2011)CrossRef S. Nikiforov, V. Kortov, A. Nosal, E. Moiseikin, Phys. Sol. Stat. 53, 2141 (2011)CrossRef
58.
go back to reference S. Zvonarev, V. Kortov, T. Shtang, D. Ananchenko, K. Petrovykh, Appl. Rad. Isotopes 95, 44 (2015)CrossRef S. Zvonarev, V. Kortov, T. Shtang, D. Ananchenko, K. Petrovykh, Appl. Rad. Isotopes 95, 44 (2015)CrossRef
59.
60.
61.
62.
go back to reference M. Akselrod, V. Kortov, D. Kravetsky, V. Gotlib, Rad. Prot. Dosi. 32, 15 (1990) M. Akselrod, V. Kortov, D. Kravetsky, V. Gotlib, Rad. Prot. Dosi. 32, 15 (1990)
Metadata
Title
Annealing temperature-driven near-surface crystallization with improved luminescence in self‐patterned alumina films
Authors
S. Pal
S. Bhowmick
S. A. Khan
A. Claverie
D. Kanjilal
A. K. Bakshi
A. Kanjilal
Publication date
07-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05790-0

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue