Skip to main content
Top
Published in: Engineering with Computers 3/2017

05-04-2017 | Original Article

Application of quintic B-splines collocation method for solving inverse Rosenau equation with Dirichlet’s boundary conditions

Authors: Akram Saeedi, Reza Pourgholi

Published in: Engineering with Computers | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we discuss a numerical method for solving an inverse Rosenau equation with Dirichlet’s boundary conditions. The approach used is based on collocation of a quintic B-spline over finite elements so that we have continuity of dependent variable and it first four derivatives throughout the solution range. We apply quintic B-spline for spatial variable and derivatives which produce an ill-posed system. We solve this system using Tikhonov regularization method. The accuracy of the proposed method is demonstrated by applying it on a test problem. Figures and comparisons have been presented for clarity. The main advantage of the resulting scheme is that the algorithm is very simple, so it is very easy to implement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aguero M, Ongay F, Sanchez-Mondragon J (2011) Nonclassical solitary waves for nonlinear ordinary differential equation. Fundam J Mod Phys 1:41–62 Aguero M, Ongay F, Sanchez-Mondragon J (2011) Nonclassical solitary waves for nonlinear ordinary differential equation. Fundam J Mod Phys 1:41–62
2.
go back to reference Biswas A (2010) 1-Soliton solution of the \(K(m, n)\) equation with generalized evolution and time-dependent damping and dispersion. Comput Math Appl 59:2538–2542MathSciNetCrossRef Biswas A (2010) 1-Soliton solution of the \(K(m, n)\) equation with generalized evolution and time-dependent damping and dispersion. Comput Math Appl 59:2538–2542MathSciNetCrossRef
3.
go back to reference Biswas A, Triki H, Labidi M (2011) Bright and dark solitons of the Rosenau–Kawahara equation with power law nonlinearity. Phys Wave Phenom 19:24–29CrossRef Biswas A, Triki H, Labidi M (2011) Bright and dark solitons of the Rosenau–Kawahara equation with power law nonlinearity. Phys Wave Phenom 19:24–29CrossRef
4.
go back to reference Ebadi G, Biswas A (2011) The \(\frac{G^{\prime }}{G}\) method and topological soliton solution of the \(K(m, n)\) equation. Commun Nonlinear Sci Numer Simul 16:2377–2382MathSciNetCrossRefMATH Ebadi G, Biswas A (2011) The \(\frac{G^{\prime }}{G}\) method and topological soliton solution of the \(K(m, n)\) equation. Commun Nonlinear Sci Numer Simul 16:2377–2382MathSciNetCrossRefMATH
5.
go back to reference Inc M, Ulutas E, Cavlak E, Biswas A (2013) Singular 1-soliton solution of the \(K(m, n)\) equation with generalized evolutions and its subsidiaries. Acta Phys Polon B 44:1825–1836MathSciNetCrossRef Inc M, Ulutas E, Cavlak E, Biswas A (2013) Singular 1-soliton solution of the \(K(m, n)\) equation with generalized evolutions and its subsidiaries. Acta Phys Polon B 44:1825–1836MathSciNetCrossRef
6.
go back to reference Antonova M, Biswas A (2009) Adiabatic parameter dynamics of perturbed solitary waves. Commun Nonlinear Sci Numer Simul 14:734–748MathSciNetCrossRefMATH Antonova M, Biswas A (2009) Adiabatic parameter dynamics of perturbed solitary waves. Commun Nonlinear Sci Numer Simul 14:734–748MathSciNetCrossRefMATH
7.
go back to reference Biswas A (2009) solitary wave solution for the generalized kdv equation with time-dependent damping and dispersion. Commun Nonlinear Sci Numer Simul 14:3503–3506MathSciNetCrossRefMATH Biswas A (2009) solitary wave solution for the generalized kdv equation with time-dependent damping and dispersion. Commun Nonlinear Sci Numer Simul 14:3503–3506MathSciNetCrossRefMATH
8.
go back to reference Ebadi G, Mojaver A, Triki H, Yildirim A, Biswas A (2013) Topological solitons and other solutions of the Rosenau-KdV equation with power law nonlinearity. Rom J Phys 58:3–14MathSciNet Ebadi G, Mojaver A, Triki H, Yildirim A, Biswas A (2013) Topological solitons and other solutions of the Rosenau-KdV equation with power law nonlinearity. Rom J Phys 58:3–14MathSciNet
9.
go back to reference Razborova P, Ahmed B, Biswas A (2014) Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity. Appl Math Inf Sci 8:485–491MathSciNetCrossRef Razborova P, Ahmed B, Biswas A (2014) Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity. Appl Math Inf Sci 8:485–491MathSciNetCrossRef
10.
go back to reference Razborova P, Triki H, Biswas A (2013) Perturbation of dispersive shallow water waves. Ocean Eng 63:1–7CrossRef Razborova P, Triki H, Biswas A (2013) Perturbation of dispersive shallow water waves. Ocean Eng 63:1–7CrossRef
12.
go back to reference Rosenau P (1986) A quasi-continuous description of a nonlinear transmission line. Phys Script 349:827–829CrossRef Rosenau P (1986) A quasi-continuous description of a nonlinear transmission line. Phys Script 349:827–829CrossRef
13.
go back to reference Rosenau P (1988) Dynamics of the dense discrete systems. Prog Theor Phys 79:1028–1042CrossRef Rosenau P (1988) Dynamics of the dense discrete systems. Prog Theor Phys 79:1028–1042CrossRef
17.
go back to reference Mittal RC, Jain RK (2012) Numerical solution of general Rosenau-RLW equation using Quintic B-splines collocation method, volume 2012, p 16, Article ID cna-00129 Mittal RC, Jain RK (2012) Numerical solution of general Rosenau-RLW equation using Quintic B-splines collocation method, volume 2012, p 16, Article ID cna-00129
18.
go back to reference Abtahi M, Pourgholi R, Shidfar A (2011) Existence and uniqueness of solution for a two dimensional nonlinear inverse diffusion problem. Nonlinear Anal 74:2462–2467MathSciNetCrossRefMATH Abtahi M, Pourgholi R, Shidfar A (2011) Existence and uniqueness of solution for a two dimensional nonlinear inverse diffusion problem. Nonlinear Anal 74:2462–2467MathSciNetCrossRefMATH
19.
go back to reference Pourgholi R, Dana H, Tabasi SH (2014) Solving an inverse heat conduction problem using genetic algorithm: sequential and multi-core parallelization approach. Appl Math Model 38:1948–1958MathSciNetCrossRef Pourgholi R, Dana H, Tabasi SH (2014) Solving an inverse heat conduction problem using genetic algorithm: sequential and multi-core parallelization approach. Appl Math Model 38:1948–1958MathSciNetCrossRef
20.
go back to reference Pourgholi R, Esfahani A (2013) An efficient numerical method for solving an inverse wave problem. IJCM. 10 Pourgholi R, Esfahani A (2013) An efficient numerical method for solving an inverse wave problem. IJCM. 10
21.
go back to reference Pourgholi R, Esfahani A, Rahimi H, Tabasi SH (2013) Solving an inverse initial-boundary-value problem by using basis function method. Comput Appl Math 1:27–32CrossRefMATH Pourgholi R, Esfahani A, Rahimi H, Tabasi SH (2013) Solving an inverse initial-boundary-value problem by using basis function method. Comput Appl Math 1:27–32CrossRefMATH
22.
go back to reference Pourgholi R, Rostamian M, Emamjome M (2010) A numerical method for solving a nonlinear inverse parabolic problem. Inverse Probl Sci Eng 8:1151–1164MathSciNetCrossRefMATH Pourgholi R, Rostamian M, Emamjome M (2010) A numerical method for solving a nonlinear inverse parabolic problem. Inverse Probl Sci Eng 8:1151–1164MathSciNetCrossRefMATH
24.
go back to reference Pourgholi R, Tavallaie N, Foadian S (2012) Applications of Haar basis method for solving some ill-posed inverse problems. J Math Chem 8:2317–2337MathSciNetCrossRefMATH Pourgholi R, Tavallaie N, Foadian S (2012) Applications of Haar basis method for solving some ill-posed inverse problems. J Math Chem 8:2317–2337MathSciNetCrossRefMATH
25.
go back to reference Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed problems. V. H. Winston and Sons, Washington, DCMATH Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed problems. V. H. Winston and Sons, Washington, DCMATH
27.
go back to reference Murio DA (1993) The mollification method and the numerical solution of Ill-posed problems. Wiley, NewYorkCrossRef Murio DA (1993) The mollification method and the numerical solution of Ill-posed problems. Wiley, NewYorkCrossRef
28.
go back to reference Pourgholi R, Rostamian M (2010) A numerical technique for solving IHCPs using Tikhonov regularization method. Appl Math Model 34:2102–2110MathSciNetCrossRefMATH Pourgholi R, Rostamian M (2010) A numerical technique for solving IHCPs using Tikhonov regularization method. Appl Math Model 34:2102–2110MathSciNetCrossRefMATH
29.
go back to reference Molhem H, Pourgholi R (2008) A numerical algorithm for solving a one-dimensional inverse heat conduction problem. J Math Stat 4:60–63MathSciNetCrossRefMATH Molhem H, Pourgholi R (2008) A numerical algorithm for solving a one-dimensional inverse heat conduction problem. J Math Stat 4:60–63MathSciNetCrossRefMATH
30.
go back to reference Beck JV, Blackwell B, St CR (1985) Clair, inverse heat conduction: Ill posed problems. Wiley, NewYork Beck JV, Blackwell B, St CR (1985) Clair, inverse heat conduction: Ill posed problems. Wiley, NewYork
31.
go back to reference Zhou J, Zhang Y, Chen JK, Feng ZC (2010) Inverse heat conduction in a composite slab with pyrolysis effect and temperature-dependent thermophysical properties. J Heat Transf 132(3):034502CrossRef Zhou J, Zhang Y, Chen JK, Feng ZC (2010) Inverse heat conduction in a composite slab with pyrolysis effect and temperature-dependent thermophysical properties. J Heat Transf 132(3):034502CrossRef
32.
go back to reference Huanga C-H, Yeha C-Y, Orlande HRB (2003) A nonlinear inverse problem in simultaneously estimating the heat and mass production rates for a chemically reacting fluid. Chem Eng Sci 58(16):3741–3752CrossRef Huanga C-H, Yeha C-Y, Orlande HRB (2003) A nonlinear inverse problem in simultaneously estimating the heat and mass production rates for a chemically reacting fluid. Chem Eng Sci 58(16):3741–3752CrossRef
33.
go back to reference Caglar H, Caglar N, Elfaituri K (2006) B-spline interpolation compared with finite element and finite volume methods which applied to two point boundary value problems. Appl Math Comput 175:72–79MathSciNetMATH Caglar H, Caglar N, Elfaituri K (2006) B-spline interpolation compared with finite element and finite volume methods which applied to two point boundary value problems. Appl Math Comput 175:72–79MathSciNetMATH
34.
go back to reference Caglar N, Caglar H (2006) B-spline solution of singular boundary value problems. Appl Math Comput 182:1509–1513MathSciNetMATH Caglar N, Caglar H (2006) B-spline solution of singular boundary value problems. Appl Math Comput 182:1509–1513MathSciNetMATH
35.
go back to reference Caglar H, Ozer M, Caglar N (2008) The numerical solution of the one dimensional heat equation by using third degree B-spline functions. Chaos Solitons Fract 38:1197–1201CrossRefMATH Caglar H, Ozer M, Caglar N (2008) The numerical solution of the one dimensional heat equation by using third degree B-spline functions. Chaos Solitons Fract 38:1197–1201CrossRefMATH
36.
go back to reference Mittal RC, Jain RK (2012) Application of quintic B-splines collocation method on some Rosenau type nonlinear higher order evolution equations. Int J Nonlinear Sci 13:142–152MathSciNetMATH Mittal RC, Jain RK (2012) Application of quintic B-splines collocation method on some Rosenau type nonlinear higher order evolution equations. Int J Nonlinear Sci 13:142–152MathSciNetMATH
37.
go back to reference Mittal RC, Arora G (2011) Numerical solution of the coupled viscous Burger’s equation. Commun Nonlinear Sci Numer Simul 16:1304–1313MathSciNetCrossRefMATH Mittal RC, Arora G (2011) Numerical solution of the coupled viscous Burger’s equation. Commun Nonlinear Sci Numer Simul 16:1304–1313MathSciNetCrossRefMATH
40.
go back to reference Tikhonov AN, Arsenin VY (1977) On the solution of ill-posed problems. Wiley, New YorkMATH Tikhonov AN, Arsenin VY (1977) On the solution of ill-posed problems. Wiley, New YorkMATH
41.
go back to reference Martin L, Elliott L, Heggs PJ, Ingham DB, Lesnic D, Wen X (2006) Dual reciprocity boundary element method solution of the Cauchy problem for Helmholtz-type equations with variable coefficients. J Sound Vibr 297:89–105CrossRefMATH Martin L, Elliott L, Heggs PJ, Ingham DB, Lesnic D, Wen X (2006) Dual reciprocity boundary element method solution of the Cauchy problem for Helmholtz-type equations with variable coefficients. J Sound Vibr 297:89–105CrossRefMATH
42.
go back to reference Elden L (1984) A note on the computation of the generalized cross-validation function for Ill-conditioned least squares problems. BIT 24:467–472MathSciNetCrossRefMATH Elden L (1984) A note on the computation of the generalized cross-validation function for Ill-conditioned least squares problems. BIT 24:467–472MathSciNetCrossRefMATH
43.
go back to reference Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223MathSciNetCrossRefMATH Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223MathSciNetCrossRefMATH
46.
go back to reference Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill Inc., PennsylvaniaMATH Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill Inc., PennsylvaniaMATH
47.
go back to reference Kadalbajoo MK, Gupta V, Awasthi A (2008) A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection diffusion problem. J Comput Appl Math 220:271–289MathSciNetCrossRefMATH Kadalbajoo MK, Gupta V, Awasthi A (2008) A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection diffusion problem. J Comput Appl Math 220:271–289MathSciNetCrossRefMATH
48.
go back to reference Smith GD (1978) Numerical solution of partial differential equation: finite difference method. Learendom Press, Oxford Smith GD (1978) Numerical solution of partial differential equation: finite difference method. Learendom Press, Oxford
49.
go back to reference Mittal RC, Jain RK (2012) Application of quintic B-spline collocation method on some Rosenau type nonlinear higher order evolution equations. J Inf Comput Sci 7(2):083–090MathSciNetMATH Mittal RC, Jain RK (2012) Application of quintic B-spline collocation method on some Rosenau type nonlinear higher order evolution equations. J Inf Comput Sci 7(2):083–090MathSciNetMATH
50.
51.
go back to reference Guraslan G, Sari M (2011) Numerical solutions of liner and nonlinear diffusion equations by a differential quadrature method (DQM). Int J Numer Methods Biomed Eng 27:69–77CrossRef Guraslan G, Sari M (2011) Numerical solutions of liner and nonlinear diffusion equations by a differential quadrature method (DQM). Int J Numer Methods Biomed Eng 27:69–77CrossRef
52.
go back to reference Huang CH, Tsai YL (2005) A transient 3-D inverse problem in imaging the time dependentlocal heat transfer coefficients for plate fin. Appl Therm Eng 25:2478–2495CrossRef Huang CH, Tsai YL (2005) A transient 3-D inverse problem in imaging the time dependentlocal heat transfer coefficients for plate fin. Appl Therm Eng 25:2478–2495CrossRef
53.
go back to reference Mittal RC, Jain RK (2012) Cubic B-spline collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions. Commun Nonlinear Sci Numer Simul 17:4616–4625MathSciNetCrossRefMATH Mittal RC, Jain RK (2012) Cubic B-spline collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions. Commun Nonlinear Sci Numer Simul 17:4616–4625MathSciNetCrossRefMATH
54.
go back to reference Rashidinia J, Ghasemi M, Jalilian R (2010) A collocation method for the solution of nonlinear one dimensional parabolic equations. Math Sci 4(1):87–104MathSciNetMATH Rashidinia J, Ghasemi M, Jalilian R (2010) A collocation method for the solution of nonlinear one dimensional parabolic equations. Math Sci 4(1):87–104MathSciNetMATH
Metadata
Title
Application of quintic B-splines collocation method for solving inverse Rosenau equation with Dirichlet’s boundary conditions
Authors
Akram Saeedi
Reza Pourgholi
Publication date
05-04-2017
Publisher
Springer London
Published in
Engineering with Computers / Issue 3/2017
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-017-0512-3

Other articles of this Issue 3/2017

Engineering with Computers 3/2017 Go to the issue