Skip to main content
Top
Published in: Acta Mechanica Sinica 2/2018

29-05-2017 | Research Paper

Approximate solutions of the Alekseevskii–Tate model of long-rod penetration

Authors: W. J. Jiao, X. W. Chen

Published in: Acta Mechanica Sinica | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Alekseevskii–Tate model is the most successful semi-hydrodynamic model applied to long-rod penetration into semi-infinite targets. However, due to the nonlinear nature of the equations, the rod (tail) velocity, penetration velocity, rod length, and penetration depth were obtained implicitly as a function of time and solved numerically. By employing a linear approximation to the logarithmic relative rod length, we obtain two sets of explicit approximate algebraic solutions based on the implicit theoretical solution deduced from primitive equations. It is very convenient in the theoretical prediction of the Alekseevskii–Tate model to apply these simple algebraic solutions. In particular, approximate solution 1 shows good agreement with the theoretical (exact) solution, and the first-order perturbation solution obtained by Walters et al. (Int. J. Impact Eng. 33:837–846, 2006) can be deemed as a special form of approximate solution 1 in high-speed penetration. Meanwhile, with constant tail velocity and penetration velocity, approximate solution 2 has very simple expressions, which is applicable for the qualitative analysis of long-rod penetration. Differences among these two approximate solutions and the theoretical (exact) solution and their respective scopes of application have been discussed, and the inferences with clear physical basis have been drawn. In addition, these two solutions and the first-order perturbation solution are applied to two cases with different initial impact velocity and different penetrator/target combinations to compare with the theoretical (exact) solution. Approximate solution 1 is much closer to the theoretical solution of the Alekseevskii–Tate model than the first-order perturbation solution in both cases, whilst approximate solution 2 brings us a more intuitive understanding of quasi-steady-state penetration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
CTH: a software system under development at Sandia National Laboratories Albuquerque to model multidimensional, multi-material, large deformation, strong shock wave physics.
 
Literature
1.
go back to reference Allen, W.A., Rogers, J.W.: Penetration of a rod into a semi-infinite target. J. Franklin Inst. 272, 275–284 (1961)CrossRef Allen, W.A., Rogers, J.W.: Penetration of a rod into a semi-infinite target. J. Franklin Inst. 272, 275–284 (1961)CrossRef
2.
go back to reference Alekseevskii, V.P.: Penetration of a rod into a target at high velocity. Combust. Explos. Shock Waves 2, 63–66 (1966)CrossRef Alekseevskii, V.P.: Penetration of a rod into a target at high velocity. Combust. Explos. Shock Waves 2, 63–66 (1966)CrossRef
3.
go back to reference Tate, A.: A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids 15, 387–399 (1967)CrossRef Tate, A.: A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids 15, 387–399 (1967)CrossRef
4.
5.
go back to reference Christman, D.R., Gehring, J.W.: Analysis of high-velocity projectile penetration mechanics. J. Appl. Phys. 37, 1579–1587 (1966)CrossRef Christman, D.R., Gehring, J.W.: Analysis of high-velocity projectile penetration mechanics. J. Appl. Phys. 37, 1579–1587 (1966)CrossRef
6.
go back to reference Hohler, V., Stilp, A.J.: Hypervelocity impact of rod projectiles with L/D from 1 to 32. Int. J. Impact Eng. 5, 323–331 (1987)CrossRef Hohler, V., Stilp, A.J.: Hypervelocity impact of rod projectiles with L/D from 1 to 32. Int. J. Impact Eng. 5, 323–331 (1987)CrossRef
7.
go back to reference Rosenberg, Z., Dezel, E.: The relation between the penetration capability of long rods and their length to diameter ratio. Int. J. Impact Eng. 15, 125–129 (1994)CrossRef Rosenberg, Z., Dezel, E.: The relation between the penetration capability of long rods and their length to diameter ratio. Int. J. Impact Eng. 15, 125–129 (1994)CrossRef
8.
go back to reference Anderson, C.E., Walker, J.D., Bless, S.P., et al.: On the L/D effect for long-rod penetrators. Int. J. Impact Eng. 18, 247–264 (1996)CrossRef Anderson, C.E., Walker, J.D., Bless, S.P., et al.: On the L/D effect for long-rod penetrators. Int. J. Impact Eng. 18, 247–264 (1996)CrossRef
9.
go back to reference Anderson, C.E., Walker, J.D.: An examination of long-rod penetration. Int. J. Impact Eng. 11, 481–501 (1991)CrossRef Anderson, C.E., Walker, J.D.: An examination of long-rod penetration. Int. J. Impact Eng. 11, 481–501 (1991)CrossRef
10.
go back to reference Walker, J.D., Anderson, C.E.: A time-dependent model for long-rod penetration. Int. J. Impact Eng. 16, 19–48 (1995)CrossRef Walker, J.D., Anderson, C.E.: A time-dependent model for long-rod penetration. Int. J. Impact Eng. 16, 19–48 (1995)CrossRef
11.
go back to reference Rosenberg, Z., Marmor, E., Mayseless, M.: On the hydrodynamic theory of long-rod penetration. Int. J. Impact Eng. 10, 483–486 (1990)CrossRef Rosenberg, Z., Marmor, E., Mayseless, M.: On the hydrodynamic theory of long-rod penetration. Int. J. Impact Eng. 10, 483–486 (1990)CrossRef
12.
go back to reference Zhang, L.S., Huang, F.L.: Model for long-rod penetration into semi-infinite targets. J. Beijing Inst. Technol. 13, 285–289 (2004) Zhang, L.S., Huang, F.L.: Model for long-rod penetration into semi-infinite targets. J. Beijing Inst. Technol. 13, 285–289 (2004)
13.
go back to reference Rosenberg, Z., Dezel, E.: Further examination of long-rod penetration: the role of penetrator strength at hypervelocity impacts. Int. J. Impact Eng. 24, 85–102 (2000)CrossRef Rosenberg, Z., Dezel, E.: Further examination of long-rod penetration: the role of penetrator strength at hypervelocity impacts. Int. J. Impact Eng. 24, 85–102 (2000)CrossRef
14.
go back to reference Walters, W.P., Segletes, S.B.: An exact solution of the long-rod penetration equations. Int. J. Impact Eng. 11, 225–231 (1991)CrossRef Walters, W.P., Segletes, S.B.: An exact solution of the long-rod penetration equations. Int. J. Impact Eng. 11, 225–231 (1991)CrossRef
15.
go back to reference Segletes, S.B., Walters, W.P.: Extensions to the exact solution of the long-rod penetration/erosion equations. Int. J. Impact Eng. 28, 363–376 (2003)CrossRef Segletes, S.B., Walters, W.P.: Extensions to the exact solution of the long-rod penetration/erosion equations. Int. J. Impact Eng. 28, 363–376 (2003)CrossRef
16.
go back to reference Forrestal, M.J., Piekutowski, A.J., Luk, V.K.: Long-rod penetration into simulated geological targets at an impact velocity of 3.0 km/s. In: 11th International symposium on ballistics, vol. 2. Brussels, Belgium (1989) Forrestal, M.J., Piekutowski, A.J., Luk, V.K.: Long-rod penetration into simulated geological targets at an impact velocity of 3.0 km/s. In: 11th International symposium on ballistics, vol. 2. Brussels, Belgium (1989)
17.
go back to reference Walters, W., Williams, C., Normandia, M.: An explicit solution of the Alekseevskii–Tate penetration equations. Int. J. Impact Eng. 33, 837–846 (2006)CrossRef Walters, W., Williams, C., Normandia, M.: An explicit solution of the Alekseevskii–Tate penetration equations. Int. J. Impact Eng. 33, 837–846 (2006)CrossRef
18.
go back to reference Orphal, D.L., Anderson, C.E.: The dependence of penetration velocity on impact velocity. Int. J. Impact Eng. 33, 546–554 (2006)CrossRef Orphal, D.L., Anderson, C.E.: The dependence of penetration velocity on impact velocity. Int. J. Impact Eng. 33, 546–554 (2006)CrossRef
19.
go back to reference Orphal, D.L., Franzen, R.R.: Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. Int. J. Impact Eng. 19, 1–13 (1997)CrossRef Orphal, D.L., Franzen, R.R.: Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. Int. J. Impact Eng. 19, 1–13 (1997)CrossRef
20.
go back to reference Orphal, D.L., Franzen, R.R., Charters, A.C., et al.: Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int. J. Impact Eng. 19, 15–29 (1997)CrossRef Orphal, D.L., Franzen, R.R., Charters, A.C., et al.: Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int. J. Impact Eng. 19, 15–29 (1997)CrossRef
21.
go back to reference Sternberg, J., Orphal, D.L.: A note on the high velocity penetration of aluminum nitride. Int. J. Impact Eng. 19, 647–651 (1997)CrossRef Sternberg, J., Orphal, D.L.: A note on the high velocity penetration of aluminum nitride. Int. J. Impact Eng. 19, 647–651 (1997)CrossRef
22.
go back to reference Anderson, C.E., Riegel, J.P.: A penetration model for metallic targets based on experimental data. Int. J. Impact Eng. 80, 24–35 (2015)CrossRef Anderson, C.E., Riegel, J.P.: A penetration model for metallic targets based on experimental data. Int. J. Impact Eng. 80, 24–35 (2015)CrossRef
23.
24.
go back to reference Anderson, C.E., Littlefield, D.L., Walker, J.D.: Long-rod penetration, target resistance, and hypervelocity impact. Int. J. Impact Eng. 14, 1–12 (1993)CrossRef Anderson, C.E., Littlefield, D.L., Walker, J.D.: Long-rod penetration, target resistance, and hypervelocity impact. Int. J. Impact Eng. 14, 1–12 (1993)CrossRef
25.
go back to reference Anderson, C.E., Orphal, D.L.: Analysis of the terminal phase of penetration. Int. J. Impact Eng. 29, 69–80 (2003)CrossRef Anderson, C.E., Orphal, D.L.: Analysis of the terminal phase of penetration. Int. J. Impact Eng. 29, 69–80 (2003)CrossRef
Metadata
Title
Approximate solutions of the Alekseevskii–Tate model of long-rod penetration
Authors
W. J. Jiao
X. W. Chen
Publication date
29-05-2017
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 2/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0672-9

Other articles of this Issue 2/2018

Acta Mechanica Sinica 2/2018 Go to the issue

Premium Partners